Advertisement

Cereal Research Communications

, Volume 36, Issue 3, pp 373–385 | Cite as

Notes on the Origin of 4BL-5RL Rye Translocations in Common Wheat (Triticum aestivum L.)

  • R. SchlegelEmail author
  • V. Korzun
Open Access
Article

Abstract

In order to investigate the origin of two 4B-5R wheat-rye translocations a number of microsatellite markers were considered, (a) which were specific for the rye chromosome arm 5RL and (b) which should enable precise characterisation for the gene pool of a ‘Cornell’ wheat derivative. Seven out of eight markers revealed amplification fragments with the rye control, while the marker WMS0186 amplified only a PCR product with the appropriate chromosome arm of the wheat control. The heterogeneity of the DNA fragment patterns among five wheat-rye translocation lines confirms different wheat backgrounds of the American, Danish/UK, Hungarian, and Swedish sources of the 4B-5R translocations. The homogeneous DNA marker patterns of ‘Viking-hairy neck’ and ‘Cornell Sel. 82a1-2-4-7’ are particularly clear. The corresponding molecular markers together with the cytological data, genomic in situ hybridisation, the physiological investigations, and the historical review support the hypothesis of a common origin of ‘Viking-hairy neck’ and ‘Cornell Sel. 82a1-2-4-7’. The importance of the results for practical breeding and for introgression experiments is discussed.

Keywords

wheat 4BL-5RL translocation introgression rye SSR markers GISH micronutrition Viking Cornell Sel phytosiderophore pedigree 

References

  1. Carman, E.S. 1894. Ruralisms (Two rural New Yorker wheats, no. 57 and no. 6). Rural New Yorker 53:634–635.Google Scholar
  2. Chang, T.D. 1975. Mapping of the gene for hairy peduncle (Ha1) on rye chromosome 5R. Can. J. Genet. Cytol. 17:127–128.CrossRefGoogle Scholar
  3. Driscoll, C.J. 1962. A genetic method for detecting induced intergeneric translocations. Ph.D. thesis, Cornell University, Ithaca, NY (USA), pp. 1–90.Google Scholar
  4. Driscoll, C.J. 1971. Letter to N.J. Jensen (Dept. of Plant Breeding and Biometry, Cornell University), Archive Cornell University, Ithaca, USA, facsimile provided to the authors by M. Sorrels, Cornell University, 2007.Google Scholar
  5. Driscoll, C.J., Bielig, L.M. 1968. Mapping of the Transec wheat-rye translocation. Can. J. Genet. Cytol. 10:421–425.CrossRefGoogle Scholar
  6. Driscoll, C.J., Jensen, N.F. 1963. A genetic method for detecting induced intergeneric translocations. Genetics 48:459–468.PubMedPubMedCentralGoogle Scholar
  7. Driscoll, C.J., Sears, E.R. 1963. The nature of a spontaneous transfer of hairy neck from rye to wheat. In: Geerts, S.J. (ed.), Proc. 11 th Int. Congress on Genetics, The Hague (Netherlands), Macmillan, New York (USA), p. 123.Google Scholar
  8. Driscoll, C.J., Sears, E.R. 1965. Mapping of a wheat-rye translocation. Genetics 51:439–443.PubMedPubMedCentralGoogle Scholar
  9. Gaines, E.F., Stevenson, F.J. 1922. Rye-wheat and wheat-rye hybrids. J. Heredity 13:81–90.CrossRefGoogle Scholar
  10. Gill, B.S., Lu, F., Schlegel, R., Endo, T.E. 1988. Toward a cytogenetic and molecular description of wheat chromosomes. Proc. 7 th Int. Wheat Genet. Symp., Cambridge (UK), pp. 477–481.Google Scholar
  11. Graham, R.D. 1984. Breeding for nutritional characteristics in cereals. Adv. Plant Nutr. 1:57–102.Google Scholar
  12. Graham, R.D., Welch, R.M. 1996. Breeding for staple food crops with high micronutrient density. Working Papers Agric. Strategy Micronutr. 3, Int. Food Policy Res. Inst., Washington, D.C., USA.Google Scholar
  13. Horton, S., Ross, J. 2003. The economics of iron deficiency. Food Policy 28:51–75.CrossRefGoogle Scholar
  14. Jensen, N.F., Kent, G.C. 1952. Disease resistance from a wheat × rye cross. J. Heredity 43:252.CrossRefGoogle Scholar
  15. Jensen, N.F. 1959. Remarks in seed book (Dept. of Plant Breeding and Biometry, Cornell University), Archive Cornell University, Ithaca, USA, facsimile provided to the authors by M. Sorrels, Cornell University, 2007.Google Scholar
  16. Kattermann, G. 1935. Genetische Ergebnisse bei Weizenroggenbastarden bis F4. I. Die Behaarung des Halmes und Beziehung dieses Merkmals zu Strohlänge und Bekörnung. Pflanzenbau 4:131–149.Google Scholar
  17. Kattermann, G. 1937a. Zur Cytologie halmbehaarter Stämme aus Weizenroggenbastardierung. Züchter 9:196–199.CrossRefGoogle Scholar
  18. Kattermann, G. 1937b. Das Verhalten der Chromosomen für Behaarung roggenbehaarter Nachkommen aus Weizenroggenbastardierung mit 2n = 42 Chromosomen. Zeitschr. f. indukt. Abstamm. und Vererbungsl. 74:1–16.Google Scholar
  19. Kattermann, G. 1938. Über konstante, halmbehaarte Stämme aus Weizenroggenbastardierung mit 2n = 42 Chromosomen. Zeitschr. f. indukt. Abstamm. und Vererbungslehre 74:354–375.Google Scholar
  20. Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V., Börner, A. 2004. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 109:725–732.CrossRefGoogle Scholar
  21. Leach, R.C., Dundas, I.S. 2006. Single nucleotide polymorphic marker enabling rapid and early screening for the homoeolocus of β -amylase-R1: a gene linked to copper efficiency on 5RL. Theor. Appl. Genet. 113:301–307.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Leach, R.C., Dundas, I.S., Houben, A. 2006. Construction of comparative genetic maps of two 4Bs.eB1-5R1 translocations in bread wheat (Triticum aestivum L.). Genome 49:1–6.CrossRefGoogle Scholar
  23. Leighty, C.E., Taylor, J.W. 1924. “Hairy neck” wheat segregates from wheat-rye hybrids. J. Agric. Res. 28:567–576.Google Scholar
  24. Merker, A. 1975. Chromosome composition of hexaploid triticales. Hereditas 80:41–52.CrossRefGoogle Scholar
  25. Mori, S.N., Kishi-Nishizawa, N., Fujigaki, J. 1990. Identification of rye chromosome 5R as a carrier of the genes for mugeneic acid synthetase and 3-hydroxymugineic acid synthetase using wheat-rye additions. Jap. J. Genet. 65:343–353.CrossRefGoogle Scholar
  26. O’Mara, J.G. 1940. Cytogenetic studies on triticale. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics 25:401–408.PubMedPubMedCentralGoogle Scholar
  27. O’Mara, J.G. 1947. The substitution of a specific Secale cereale chromosome for a specific Triticum aestivum chromosome. Genetics 32:99–100.Google Scholar
  28. Riley, R., Chapman, V. 1958. The production and phenotypes of wheat-rye chromosome addition lines. Heredity 12:301–315.CrossRefGoogle Scholar
  29. Riley, R., Chapman, V., Miller, T.E. 1970. Hairy necked Viking. Ann. Rep., Plant Breed. Inst., Cambridge, 98.Google Scholar
  30. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.-H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  31. Rogowsky, P.M., Guidet, F.L.Y., Langridge, P., Shepherd, K.W., Koebner, R.M.D. 1991. Isolation and characterisation of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor. Appl. Genet. 82:537–544.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Schlegel, R. 1992. Verbesserung der Mikronährstoff-Effizienz beim Weizen durch Introgression. Ber. 43. Arbeitstag., Arbeitsgem. Saatzuchtleiter, BAL Gumpenstein (Österreich), pp. 167–170.Google Scholar
  33. Schlegel, R., Cakmak, I. 1997a. Physical mapping of rye genes determining micronutritional efficiency in wheat. In: Ando, T. (ed.), Plant Nutrition — for sustainable food production and environment. Kluwer Acad. Publ. (Tokyo), pp. 287–288.CrossRefGoogle Scholar
  34. Schlegel, R., Cakmak, I. 1997b. Micronutritional efficiency in crop plants — a new challenge for cytogenetic research. In: Lelley, T. (ed.), Current Topics in Plant Cytogenetics Related to Plant Improvement. WUF Univ. Verlag, Wien (Austria), pp. 91–102.Google Scholar
  35. Schlegel, R., Gill, B.S. 1984. N-banding analysis of rye chromosomes and the relationship between N-banded and C-banded heterochromatin. Can. J. Genet. Cytol. 26:765–769.CrossRefGoogle Scholar
  36. Schlegel, R., Korzun, V. 1997. About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed. 116:537–540.CrossRefGoogle Scholar
  37. Schlegel, R., Korzun, V. 2007. Genes, marker and linkage data of rye (Secale cereale L.) — 6 th updated inventory. Vortr. f. Pflanzenzüchtung 71:225–244.Google Scholar
  38. Schlegel, R., Kynast, R. 1993. Micronutritional efficiency and its manipulation in wheat. Proc. 8th Int. Wheat Genet. Symp., Beijing (China), pp. 1047–1053.Google Scholar
  39. Schlegel, R., Werner, T., Hülgenhof, E. 1991a. Confirmation of a 4BL/5RL wheat-rye chromosome translocation in the wheat variety ‘Viking’ showing high copper efficiency. Plant Breed. 107:226–234.CrossRefGoogle Scholar
  40. Schlegel, R., Werner, T., Jacob, F. 1991b. Mineral nutrition and genetic control in cereals. Vortr. f. Pflanzenzüchtung 20:85–94.Google Scholar
  41. Schlegel, R., Kynast, R., Schwarzacher, T., Römheld, V., Walter, A. 1993. Mapping of genes for copper efficiency in rye and the relationship between copper and iron efficiency. Plant and Soil 154:61–65.CrossRefGoogle Scholar
  42. Schlegel, R., Cakmak, I., Torun, B., Eker, S., Köleli, N. 1997. The effect of rye genetic information on zinc, copper, manganese and iron concentration of wheat shoots in zinc deficient soil. Cereal Res. Comm. 25:177–184.Google Scholar
  43. Schlegel, R., Cakmak, I., Ekiz, H., Kalayci, M., Braun, H.J. 1998. Screening for zinc efficiency among wheat relatives and their utilisation for an alien gene transfer. Euphytica 100:347–352.CrossRefGoogle Scholar
  44. Sebesta, E.E. 1958. Cytological studies on certain wheat-rye hybrid derivatives. Ph.D. thesis, Cornell University, Ithaca, New York (USA), pp. 1–102.Google Scholar
  45. Taylor, J.W. 1934. Irregularities in the inheritance of hairy neck character transposed from Secale to Triticum. Wheat segregates from wheat-rye hybrids. J. Agric. Res. 48:603–617.Google Scholar
  46. Varshney, R.K., Sigmund, R., Börner, A., Korzun, V., Stein, N., Sorrells, M., Langridge, P., Graner, A. 2004. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science 168:195–202.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.GaterslebenGermany
  2. 2.Lochow-Petkus GmbHEinbeckGermany

Personalised recommendations