Advertisement

Cereal Research Communications

, Volume 36, Issue 2, pp 247–255 | Cite as

Fluorescent in situ Hybridization Polymorphism on the 1RS Chromosome Arms of Cultivated Secale cereale Species

  • É. Szakács
  • M. Molnár-LángEmail author
Article

Abstract

The present study was focused on the selection of S. cereale cultivars of different geographic origin showing polymorphism detectable by fluorescent in situ hybridization on their 1RS chromosome arms. One perennial and four annual genotypes were tested. FISH was carried out with the DNA probes pSc119.2 and (AAC) 5. The pSc119.2 probe gave hybridization signals different from that of the rye ‘Petkus’ on the 1RS arms of all five rye cultivars examined. Differences were manifested mainly in the intensity of the labelling, but the complete lack of FISH signals and double signals were also observed.

Keywords

Secale cereale 1BL/1RS translocation polymorphism fluorescent in situ hybridization (FISH) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alkhimova, O.G., Mazurok, N.A., Potapova, T.A., Zakian, S.M., Heslop-Harrison, J.S., Vershinin, A.V. 2004. Diverse patterns of the tandem repeats organization in rye chromosomes. Chromosoma 113:42–52.CrossRefGoogle Scholar
  2. Bedbrook, J.R., Jones, J., O’Dell, M., Thompson, R.J., Flavell, R.B. 1980. A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560.CrossRefGoogle Scholar
  3. Contento, A., Heslop-Harrison, J.S., Schwarzacher, T. 2005. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenetic and Genome Research 109:34–42.CrossRefGoogle Scholar
  4. Cuadrado, A., Jouve, N. 1994. Mapping and organization of highly-repeated DNA sequences by means of simultaneous and sequential FISH and C-banding in 6×-triticale. Chromosome Res. 2:331–338.CrossRefGoogle Scholar
  5. Cuadrado, A., Jouve, N. 1997. Distribution of highly repeated DNA sequences in species of the genus Secale. Genome 40:309–317.CrossRefGoogle Scholar
  6. Cuadrado, A., Jouve, N. 2002. Evolutionary trends of different repetitive DNA sequences during speciation in the genus Secale. J. Hered. 93:339–345.CrossRefGoogle Scholar
  7. Cuadrado, A., Ceoloni, C., Jouve, N. 1995. Variation in highly repetitive DNA composition of heterochromatin in rye studied by fluorescence in situ hybridization. Genome 38:1061–1069.CrossRefGoogle Scholar
  8. Cuadrado, A., Schwarzacher, T., Jouve, N. 2000. Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor. Appl. Genet. 101:711–717.CrossRefGoogle Scholar
  9. Devos, K.M., Atkinson, M.D., Chinoy, C.N., Francis, H.A., Harcourt, R.L., Koebner, R.M.D., Liu, C.J., Masoj, P., Xie, D.X., Gale, M.D. 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85:673–680.CrossRefGoogle Scholar
  10. Graybosch, R.A. 2001. Uneasy unions: quality effects of rye chromatin transfers to wheat. J. Cereal Sci. 33:3–16.CrossRefGoogle Scholar
  11. Heslop-Harrison, J.S. 2000. Comparative genome organization in plants: from sequence and markers to chromatin and chromosomes. Plant Cell 12:617–635.CrossRefGoogle Scholar
  12. Jiang, J., Friebe, B., Gill, B.S. 1994. Chromosome painting of ‘Amigo’ wheat. Theor. Appl. Genet. 89:811–813.CrossRefGoogle Scholar
  13. Jones, J.D.G., Flavell, R.B. 1982. The structure, amount and chromosomal localization of defined repeated DNA sequences in species of the genus Secale. Chromosoma 86:613–641.CrossRefGoogle Scholar
  14. Kotvics, G., Krisztián, J., Dornbach, L. 1999. Perennial rye: a novel variety released from a new interspecific hybrid rye. Gyakorlati Agrofórum 10:63.Google Scholar
  15. Kőszegi, B., Linc, G., Juhász, A., Láng, L., Molnár-Láng, M. 2000. Occurrence of the 1RL/1BL wheat-rye translocation in Hungarian wheat varieties. Acta Agron. Hung. 48:227–236.CrossRefGoogle Scholar
  16. Kruppa, J. 2001. Results obtained in the breedup and production of rye and triticale. Thesis, Department of Agriculture, Centre of Agricultural Sciences, University of Debrecen, pp. 80–84.Google Scholar
  17. Leitch, I.J., Leitch, A.R., Heslop-Harrison, J.S. 1991. Physical mapping of plant DNA sequences by simultaneous in situ hybridization of two differently labelled fluorescent probes. Genome 34:329–333.CrossRefGoogle Scholar
  18. Lelley, T., Eder, C., Grausgruber, H. 2004. Influence of 1BL. 1RS wheat-rye chromosome translocation on genotype by environment interaction. J. Cereal Sci. 39:313–320.CrossRefGoogle Scholar
  19. Linc, G., Friebe, B.R., Kynast, R.G., Molnár-Láng, M., Kőszegi, B., Sutka, J., Gill, B.S. 1999. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome 42:497–503.CrossRefGoogle Scholar
  20. Lutz, J., Limpert, E., Bartos, P., Zeller, F.J. 1992. Identification of powdery mildew resistance genes in common wheat (Triticum aestivum L.). I. Czechoslovakian cultivars. Plant Breed. 108:33–39.CrossRefGoogle Scholar
  21. Marais, G.F., Horn, M., Du Torr, F. 1994. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed. 113:265–271.CrossRefGoogle Scholar
  22. Martin, D.J., Stewart, B.G. 1990. Dough stickiness in rye-derived wheat cultivars. Euphytica 51:77–86.CrossRefGoogle Scholar
  23. McIntosh, R.A. 1988. Catalogue of gene symbols for wheat. In: Miller, T.E., Koebner, R.M.D. (eds), Proc. 7 th Intern. Wheat Genet. Symp., Cambridge, England, pp. 1225–1323.Google Scholar
  24. McIntyre, C.L., Pereira, S., Moran, L.B., Appels, R. 1990. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome 33:635–640.CrossRefGoogle Scholar
  25. Mettin, D., Bluthner, W.D., Schlegel, G. 1973. Additional evidence on spontaneous 1B/1R wheat rye substitutions and translocations. In: Sears, E.R., Sears, L.M.S. (eds), Proc. 4 th Int. Wheat Genet. Symp., Aug. 6–11, 1973. Agric. Expt. Stn., College of Agric. University of Missouri, Missouri, Columbia, Missouri, pp. 179–184.Google Scholar
  26. Nagy, E.D., Lelley, T. 2003. Genetic and physical mapping of sequence-specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm of rye in a wheat background. Theor. Appl. Genet. 107:1271–1277.CrossRefGoogle Scholar
  27. Nagy, E.D., Molnár-Láng, M. 2000. Frequency of pairing between the 1B/1R translocations and its respective homo(eo)logues in a wheat-rye hybrid as revealed by GISH. Cereal Res. Comm. 28:41–48.Google Scholar
  28. Naranjo, T., Fernández-Rueda, P. 1991. Homoeology of rye chromosomes to wheat. Theor. Appl. Genet. 82:577–586.CrossRefGoogle Scholar
  29. Schlegel, R., Korzun, V. 1997. About the origin of 1RS. 1BL wheat-rye chromosome translocations from Germany. Plant Breeding 116:537–540.CrossRefGoogle Scholar
  30. Shepherd, K.W. 1973. Homeology of wheat and alien chromosomes controlling endosperm protein phenotypes. In: Sears, E.R., Sears, L.M.S. (eds), Proc. 4 th Int. Wheat Genet. Symp., Columbia, USA, pp. 745–760.Google Scholar
  31. Singh, N.K., Shepherd, K.W., McIntosh, R.A. 1990. Linkage mapping of genes for resistance to leaf, stem and stripe rusts and ω-secalins on the short arm of rye chromosome 1R. Theor. Appl. Genet. 80:609–616.CrossRefGoogle Scholar
  32. Szakács, É., Linc, G., Láng, L., Molnár-Láng, M. 2004. Detection of the 1A/1R and 1B/1R wheat/rye translocation in new Martonvásár wheat varieties and advanced lines using in situ hybridization. Növénytermelés 53:527–534.Google Scholar
  33. Vershinin, A.V., Alkhimova, E.G., Heslop-Harrison, J.S. 1996. Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Res. 4:517–525.CrossRefGoogle Scholar
  34. Villareal, R.L., Mujeeb-Kazi, A., Rajaram, S., del Toro, E. 1994. Associated effects of chromosome 1B/1R translocation on agronomic traits in hexaploid wheat. Breed. Sci. 44:7–11.Google Scholar
  35. Vrána, J., Kubaláková, M., Simková, H., Cíhalíková, J., Lysák, M.A., Dolezel, J. 2000. Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics 156:2033–2041.PubMedPubMedCentralGoogle Scholar
  36. Zeller, F.J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. Proc. 4 th Int. Wheat Genet. Symp., Univ, Missouri, Columbia, USA, pp. 209–221.Google Scholar
  37. Zeller, F.J., Fuchs, E. 1983. Cytologie und Krankheitsresistenz einer 1A/1R und mehrerer 1B/1R Weizen-Roggen Translokationssorten. Z. Pflanzenzüchtung 90:285–296.Google Scholar
  38. Zeller, F.J., Hsam, F.L.K. 1984. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto, S. (ed.), Proc. 6 th Int. Wheat Genet. Symp., Kyoto, Japan, pp. 161–173.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations