Advertisement

Cereal Research Communications

, Volume 36, Issue 1, pp 11–19 | Cite as

Polymorphism Analysis Using 1RS-Specific Molecular Markers in Rye Cultivars (Secale cereale L.) of Various Origin

  • A. Schneider
  • M. Molnár-LángEmail author
Article

Abstract

Six different 1RS-specific molecular markers (RMS13, Bmac213, GPI, 5S, SCM9, IAG95) were tested in twenty rye cultivars of various origin. The aim of the experiments was to choose rye cultivars which give polymorphic PCR products with these 1RS-specific markers compared to the wheat cultivar Mv Magdaléna, which contains the 1BL.1RS translocation. The polymorphic rye cultivars can be presumed to differ from the 1BL.1RS translocation originating from the Petkus rye cultivar and will hopefully carry effective resistance genes which can be incorporated into the 1BL.1RS translocation in wheat. Twenty rye cultivars (at least two plants per cultivar) were analysed with these markers. Of fifty-two rye samples analysed, three plants were found to be polymorphic, one (Kisvárdai Alacsony from Hungary), for the 5S marker, one (Kriszta from Hungary) for the RMS13 marker and one (Porto from Portugal) for the SCM9 marker. The polymorphic plants were grown to maturity in the phytotron.

Keywords

wheat rye 1BL.1RS translocation 1RS-specific molecular markers polymorphism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedő, Z., Balla, L., Szunics, L., Láng, L., Kramarik Kissimon, J. 1993. A martonvásári 1B/1R transzlokációs búzafajták agronómiai tulajdonságai. (Agronomic properties of Martonvásár wheat varieties bearing the 1B/1R translocation). Növénytermelés 42:391–398.Google Scholar
  2. Börner, A., Korzun, V. 1998. A consensus linkage map of rye (Secale cereale L.) including 374 RFLPs, 24 isozymes and 15 gene loci. Theor. Appl. Genet. 97:1279–1288.CrossRefGoogle Scholar
  3. Graybosch, R.A. 2001. Uneasy unions: quality effects of rye chromatin transfers to wheat. J. Cereal Sci. 33:3–16.CrossRefGoogle Scholar
  4. Hackauf, B., Wehling, P. 2002. Identification of microsatellite polymorphisms in an expressed portion of the rye genome. Plant Breeding 121:17–25.CrossRefGoogle Scholar
  5. Khlestkina, E.K., Than, M.H.M., Pestsova, E.G., Röder, M.S., Malyshev, S.V., Korzun, V., Börner, A. 2004. Mapping of 99 new microsatellite loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theor. Appl. Genet. 109:725–732.CrossRefGoogle Scholar
  6. Koebner, R.M.D. 1995. Generation of PCR-based markers for detection of rye chromatin in a wheat background. Theor. Appl. Genet. 90:740–745.CrossRefGoogle Scholar
  7. Korzun, V., Malyshev, S., Kartel, N., Westermann, T., Weber, W.E., Börner, A. 1998. A genetic linkage map of rye (Secale cereale L.). Theor. Appl. Genet. 96:203–208.CrossRefGoogle Scholar
  8. Korzun, V., Malyshev, S., Voylokov, A.V., Börner, A. 2001. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theor. Appl. Genet. 102:709–717.CrossRefGoogle Scholar
  9. Kotvics, G., Krisztián, J., Dornbach, L. 1999. Perennial cultivated rye; a new variety for Hungarian crop production. Agrofórum X. 5.63.Google Scholar
  10. Kruppa, J. 2001. Results obtained in the breedup and production of rye and triticale. PhD Thesis, Department of Agriculture, Centre of Agricultural Sciences, University of Debrecen.Google Scholar
  11. Kőszegi, B., Linc, G., Juhász, A., Láng, L., Molnár-Láng, M. 2000. Occurrence of the 1RL/1BL wheat-rye translocation in Hungarian wheat varieties. Acta Agron. Hung. 48:227–236.CrossRefGoogle Scholar
  12. Ma, X.F., Wanous, M.K., Houchins, K., Rodriguez Milla, M. A., Goicoechea, P.G., Wang, Z., Xie, M., Gustafson, J.P. 2001. Molecular linkage mapping in rye (Secale cereale L.). Theor. Appl. Genet. 102:517–523.CrossRefGoogle Scholar
  13. Mago, R., Spielmeyer, W., Lawrence, G., Lagudah, E., Ellis, J., Pryor, A. 2002. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor. Appl. Genet. 104:1317–1324.CrossRefGoogle Scholar
  14. Masojc, P., Myskow, B., Milczarski, P. 2001. Extending a RFLP-based genetic map of rye using random amplified polymorphic DNA (RAPD) and isozyme markers. Theor. Appl. Genet. 102:1273–1279.CrossRefGoogle Scholar
  15. McIntosh, R.A., Yamazaki, Y., Devos, K.M., Dubcovsky, J., Rogers, W.J., Appels, R. 2003. Catalogue of gene symbols for wheat. In: Pogna, N.E., Romano, M., Pogna, E.A., Galterio, G. (eds), Proc. 10 th Intern. Wheat Genet. Symp. Vol. 4, Paestum, Italy, pp. 34.Google Scholar
  16. Mohler, V., Hsam, S.L.K., Zeller, F.J., Wenzel, G. 2001. An STS marker distinguishing the rye-derived powdery mildew resistance alleles at the Pm8/Pm17 locus of common wheat. Plant Breeding 120:448–450.CrossRefGoogle Scholar
  17. Molnár-Láng, M., Linc, G., Sutka, J. 1996. Transfer of the recessive crossability allele kr1 from Chinese Spring into winter wheat variety Martonvásári 9. Euphytica 90:301–305.CrossRefGoogle Scholar
  18. Nagy, E.D., Christoph, E., Molnár-Láng, M., Lelley, T. 2003a. Genetic mapping of sequence-specific PCR-based markers on the short arm of the 1BL.1RS wheat rye translocation. Euphytica 132:243–250.CrossRefGoogle Scholar
  19. Nagy, E.D., Lelley, T. 2003b. Genetic and physical mapping of sequence specific amplified polymorphic (SSAP) markers on the 1RS chromosome arm in a wheat background. Theor. Appl. Genet. 107:1271–1277.CrossRefGoogle Scholar
  20. Nagy, E.D., Molnár-Láng, M. 2000. Frequency of pairing between the 1B/1R translocation and its respective homo(eo)logues in a wheat-rye hybrid as revealed by GISH. Cereal Res. Comm. 28:41–48.Google Scholar
  21. Rajaram, S., Mann, C.E., Oniz-Ferrara, G., Mujeeb-Kazi, A. 1983. Adaptation, stability and high yield potential of certain 1B/1R CIMMYT wheats. In: Sakamoto, S. (ed.), Proc. of the 6 th Intern. Wheat Genet. Symp., Kyoto, Japan, pp. 613–621.Google Scholar
  22. Ramsay, L., Macaulay, M., degli Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J., Edwards, K.J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W., Waugh, R. 2000. A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005.PubMedPubMedCentralGoogle Scholar
  23. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  24. Saal, B., Wricke, G. 1999. Development of simple sequence repeat markers in rye (Secale cereale L.). Genome 42:964–972.CrossRefGoogle Scholar
  25. Schlegel, R., Korzun, V. 1997. About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breed. 116:537–540.CrossRefGoogle Scholar
  26. Shepherd, K.W. 1973. Homeology of wheat and alien chromosomes controlling endosperm protein phenotypes. In: Sears, E.R., Sears, L.M.S. (eds), Proc. 4 th Intern. Wheat Genet. Symp., Univ, Missouri, Columbia, USA, pp. 745–760.Google Scholar
  27. van Capenhout, S. 1997. Chromosome-specific PCR markers for wheat genome analysis and manipulation. Dissertationes de Agricultura 337. Katholike Universität, LeuvenGoogle Scholar
  28. Zeller, F.J. 1973. 1B/1R wheat-rye chromosome substitutions and translocations. In: Sears, E.R., Sears, L.M.S. (eds), Proc. 4 th Intern. Wheat Genet. Symp., Univ, Missouri, Columbia, USA, pp. 209–221.Google Scholar
  29. Zeller, F.J., Fuchs, E. 1983. Cytologie und Krankheitresistenz einer 1A/1R und mehrerer 1B/1R Weizen-Roggen Translokationssorten. Z. Pflanzenzüchtung 90:285–296.Google Scholar
  30. Zeller, F.J., Hsam, F.L.K. 1984. Broadening the genetic variability of cultivated wheat by utilizing rye chromatin. In: Sakamoto, S. (ed.), Proc. 6 th Intern. Wheat Genet. Symp., Kyoto, Japan, pp. 161–173.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2008

Authors and Affiliations

  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations