Cereal Research Communications

, Volume 35, Issue 4, pp 1551–1562 | Cite as

Barley (Hordeum vulgare L.) Marker Linkage Map: A Case Study of Various Marker Types and of Mapping Population Structure

  • I. KarsaiEmail author
  • P. Szűcs
  • K. Mészáros
  • K. Puskás
  • Z. Bedő
  • O. Veisz


A barley mapping population consisting of 96 doubled haploid lines of anther culture origin was developed from the varieties Dicktoo and Kompolti Korai, which represent diverse types with respect to geographical origin and ecological adaptation. Several molecular marker techniques were used in mapping: among the markers with known chromosome location, RFLP, STS and SSR markers were applied to identify linkage groups and for comparative mapping, while RAPD and AFLP markers, which have random binding but provide useful information on polymorphism, were employed to fill in the linkage groups with markers. A total of 496 markers were tested in the DH population, 246 of which were included in the linkage map after eliminating markers that were completely linked with each other. The ratio of markers with known chromosome location to random markers in the 1107 cM map was one to three, and the mean recombination distance between the markers was 4.5 cM. Application of various marker methods and the effect of the population structure on the development of marker linkage maps are discussed.


linkage map molecular markers barley Hordeum vulgare L. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Barnabás, B., Szakács, É., Karsai, I., Bedő, Z. 2001. In vitro and rogenesis of wheat: from fundamentals to practical application. Euphytica 119:211–216.CrossRefGoogle Scholar
  2. Bányai, J., Szűcs, P., Karsai, I., Mészáros, K., Kuti, C., Láng, L., Bedő, Z. 2006. Identification of winter wheat cultivars by simple sequence repeats (SSRs). Cereal Res. Comm. 34:865–870.CrossRefGoogle Scholar
  3. Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierscheider, M., Ruckenbauer, P. 2002. Molecular mapping of QTLs for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (Type II resistance). Theor. Appl. Genet. 104:84–91.PubMedGoogle Scholar
  4. Castillo, A.M., Cistué, L., Romagosa, I., Vallés, M.P. 2001. Low responsiveness of six-rowed genotypes to and rogenesis in barley does not have a pleiotropic basis. Genome 44:936–940.CrossRefGoogle Scholar
  5. Ciusté, L., Vallés, M.P., Echávarri, B., Sanz, J.M., Castillo, A. 2003. Barley anther culture. In: Maluszynski, M., Kasha, K.J., Forster, B.P., Szarejko, I. (eds), Doubled Haploid Production in Crop Plants. Kluwer Academic Publishers, Dordrecht, pp. 29–34.CrossRefGoogle Scholar
  6. Feuillet, C., Keller, B. 2002. Comparative genomics in the grass family: molecular characterization of grass genome structure and evolution. Annals of Botany 89:3–10.CrossRefGoogle Scholar
  7. Hazen, S.P., Leroy, P., Ward, R.W. 2002. AFLP in Triticum aestivum L.: patterns of genetic diversity and genome distribution. Euphytica 125:89–102.CrossRefGoogle Scholar
  8. Karsai, I., Mészáros, K., Láng, L., Hayes, P.M., Bedő, Z. 2001. Multivariate analysis of traits determining adaptation in cultivated barley. Plant Breeding 120:217–222.CrossRefGoogle Scholar
  9. Karsai, I., Szűcs, P., Mészáros, K., Filichkina, T., Hayes, P.M., Skinner, J.S., Láng, L., Bedő, Z. 2005. The Vrn-H2 locus is a major determinant of flowering time in a facultative × winter growth habit barley (Hordeum vulgare L.) mapping population. Theor. Appl. Genet. 110:1458–1466.CrossRefGoogle Scholar
  10. Karsai, I., Mészáros, K., Láng, L., Bedő, Z. 2006. Identification of chromosome regions involved in the genetic regulation of tillering in barley (Hordeum vulgare L.). Acta Agron. Hung. 54:15–23.CrossRefGoogle Scholar
  11. Kleinhofs, A., Kilian, A., Saghai-Maroof, M.A., Biyashev, R.M., Hayes, P.M., Chen, F.Q., Lapitan, N., Fenwick, A., Blake, T.K., Kanazin, V., Ananiev, E., Dahleen, L., Kudrna, D., Bollinger, J., Knapp, S.J., Liu, B., Sorrells, M., Heun, M., Franckowiak, J.D., Hoffman, D., Skadsen, R., Steffenson, B.J. 1993. A molecular, isozyme and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet. 86:705–712.CrossRefGoogle Scholar
  12. Künzel, G., Korzun, L., Meister, A. 2000. Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412.PubMedPubMedCentralGoogle Scholar
  13. Linc, G., Karsai, I., Láng-Molnár, M., Bedő, Z. 1996. Comparison of RFLP probes and RAPD primers for studying genetic diversity in barley (Hordeum vulgare L.). Cereal Res. Comm. 24:283–290.Google Scholar
  14. Liu, Z.H., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, J.B., Faris, J.D. 2005. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor. Appl. Genet. 111:782–794.CrossRefGoogle Scholar
  15. Mészáros, K., Karsai, I., Bedő, Z. 1996. Reliability of genetic distance estimation methods in barley (Hordeum vulgare L.). J. of Genetics & Breeding 50:387–392.Google Scholar
  16. Ramsay, L., Macaulay, M., Ivanissevich, S., MacLean, K., Cardle, L., Fuller, J., Edwards, K.J., Tuvesson, S., Morgante, M., Massari, A., Maestri, E., Marmiroli, N., Sjakste, T., Ganal, M., Powell, W., Waugh, R. 2000. A simple sequence repeat-based linkage map of barley. Genetics 156:1997–2005.PubMedPubMedCentralGoogle Scholar
  17. Rostoks, N., Mudie, S., Cardle, L., Russell, J., Ramsay, L., Booth, A., Svensson, J.T., Wanamaker, S.I., Waila, H., Rodrigez, E.M., Hedley, P.E., Liu, H., Morris, J., Close, T.J., Marshall, D.F., Waugh, R. 2005. Genome-wide SNP discovery and linkage analysis in barley based on genes responsive to abiotic stress. Mol. Genet. Genom. 274:515–527.CrossRefGoogle Scholar
  18. Song, Q.J., Shi, J.R., Singh, S., Fickus, E.W., Costa, J.M., Lewis, J., Gill, B.S., Ward, R., Cregan, P.B. 2005. Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 110:550–560.CrossRefGoogle Scholar
  19. Suenaga, K., Khairallah, M., William, H.M., Hoisington, D.A. 2005. A new intervarietal linkage map and its application for quantitative trait locus analysis of “gigas” features in bread wheat. Genome 48:65–75.CrossRefGoogle Scholar
  20. Szűcs, P., Karsai, I., von Zitzewitz, J., Mészáros, K., Cooper, L.D.D., Gu, Y.Q., Chen, T.H.H., Hayes, P.M., Skinner, J.S. 2006. Positional relationships between photoperiod response QTL and photoreceptor and vernalization genes in barley. Theor. Appl. Genet. 112:1277–1285.CrossRefGoogle Scholar
  21. Tragoonrung, S., Kanazin, V., Hayes, P.M., Blake, T.K. 1992. STS-facilitated PCR for barley genome mapping. Theor. Appl. Genet. 84:1002–1008.CrossRefGoogle Scholar
  22. Van Ooijen, J.W. 2006. JoinMap® 4, Software for the calculation of genetic linkage maps in experimental populations. Kyazma B.V. Wageningen, Netherlands.Google Scholar
  23. Varshney, R.K., Grosse, I., Hahnel, U., Siefken, R., Prasd, M., Stein, N., Langridge, P., Altschmied, L., Graner, A. 2006. Genetic mapping and BAC asigment of EST-derived SSR markers shows non-uniform distribution of genes in the barley genome. Theor. Appl. Genet. 113:239–250.CrossRefGoogle Scholar
  24. Wenzl, P., Carling J., Kudrna, D., Jaccoud, D., Huttner, E., Kleinhofs, A., Kilian, A. 2004. Diversity arrays technology (DarT) for whole-genome profiling of barley. PNAS 101:9915–9920.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

Authors and Affiliations

  • I. Karsai
    • 1
    Email author
  • P. Szűcs
    • 1
  • K. Mészáros
    • 1
  • K. Puskás
    • 1
  • Z. Bedő
    • 1
  • O. Veisz
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations