Advertisement

Cereal Research Communications

, Volume 35, Issue 3, pp 1427–1435 | Cite as

Importance of Secondary Traits in Improvement of Maize (Zea mays L.) for Enhancing Tolerance to Excessive Soil Moisture Stress

  • P. H. ZaidiEmail author
  • P. Maniselvan
  • R. Sultana
  • M. Yadav
  • R. P. Singh
  • S. B. Singh
  • S. Dass
  • G. Srinivasan
Article

Abstract

Selection on the basis of grain yield per se for improved performance under excessive moisture stress has often been misleading and considered inefficient. We assessed the importance of secondary traits of adaptive value under waterlogging stress. During the 2000–2004 summer-rainy seasons twelve trials were conducted and a total of 436 tropical/subtropical inbred lines (S4–Sn) were evaluated under excessive soil moisture stress. Excessive moisture treatment was applied at V6–7 growth stage by flooding the experimental plots continuously for seven days. Different phenological and physiological parameters were recorded before, during and either immediately or 1–2 weeks after exposure to stress. Excessive moisture conditions significantly affected all the morphological and physiological traits studied. However, there was significant genetic variability for various traits, especially for root porosity and brace root development that were induced under excessive moisture. Across the trials, significant genetic correlations (p<0.01) was obtained between grain yield and different secondary traits, including ears per plant, root porosity, brace root fresh weight, number of nodes with brace roots and anthesis silking interval. Broad-sense heritability decreased under excessive moisture stress conditions for most of the traits; however, it increased significantly for root porosity, nodal root development and ears per plant. Our findings suggest that consideration of these secondary traits during selection of maize germplasm for excessive moisture tolerance can improve selection efficiency and genetic gains.

Keywords

maize secondary traits waterlogging 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AICRP, 2006. Directors’ report, 49th Annual Maize Workshop of All India Coordinated Maize Research Project, held at Birsa Agriculture University, Ranchi, India, 4–6 April 2006.Google Scholar
  2. Banziger, M., Lafitte, H.R. 1997. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci. 37:1110–1117.CrossRefGoogle Scholar
  3. Blum, A. 1988. Plant Breeding for Stress Environments. CRC Press, Boca Raton, Florida.Google Scholar
  4. Bolaños, J., Edmeades, G.O., 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crop Res. 31:253–268.CrossRefGoogle Scholar
  5. Bolaños, J., Edmeades, G.O. 1996. The importance of anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res. 48:65–80.CrossRefGoogle Scholar
  6. CIMMYT 1999. A user’s manual for field book 5.1/7.1 and alpha. CIMMYT, Mexico, pp. 42–48.Google Scholar
  7. Edmeades, G.O., Daynard, T.B. 1979. The development of plant-to-plant variability in maize at different planting densities. Can. J. Plant Sci. 59:561–576.CrossRefGoogle Scholar
  8. Emes, M.J., Wilkins, C.P., Smith, P.A., Kepkanchanakul, K., Hawker, K., Charlton, N.A., Cutter, E.G. 1987. Starch utilization by deep water rises during submergence. Proceeding of the International Deep water Rice Workshop, Manila, Philippines. International Rice Research Institute, pp. 319–336.Google Scholar
  9. Hallauer, A.R., Miranda, J.B.F. 1981. Quantitative Genetics in Maize Breeding. Iowa State University Press, Ames, Iowa.Google Scholar
  10. Jensen, C.R., Luxmoore, R.J., Gundy, S.D., Stolzy, L.H. 1969. Root air space measurement by a pycnometer method. Agron. J. 61:474–475.CrossRefGoogle Scholar
  11. Khera, A.S., Dillon, B.S., Saxena, V.K., Barar, H.S., Malhi, N.S. 1990. Genetic and Physiological Studies in Maize on Tolerance to Stress Caused by Waterlogged Conditions. Ad-hoc project, ICAR, New Delhi, India.Google Scholar
  12. Liu, X.Z., Wang, Z.L., Gao, Y.Z. 1991. The relationship between alcohol dehydrogenase and flooding tolerance in maize roots under water logging stress. Jiangsu. J. Agric. Sci. 7:1–5.Google Scholar
  13. McCready, R.M., Goggolz, J., Silviera, V., Owens, H.S. 1950. Determination of starch and amylose in vegetables. Anal. Chem. 22:1156–1158.CrossRefGoogle Scholar
  14. Noordwijk, M.V., Brouwer, G. 1988. Quantification of air-filled root porosity: a comparison of two methods. Plant and Soil 111:255–258.CrossRefGoogle Scholar
  15. Patterson H.D., Williams, E.R. 1976. A new classes of resolvable incomplete block designs. Biometrika 63:83–89.CrossRefGoogle Scholar
  16. Rathore, T.R., Warsi, M.Z.K., Zaidi, P.H., Singh, N.N. 1997. Water logging problem for maize production in Asian region. TAMNET News Letter 4:13–14.Google Scholar
  17. Singh, R.K., Chaudhary, B.D. 1979. Biometrical Methods in Quantitative Genetic Analysis. Kalyani Publishers, Rajendra Nagar, Ludhiana, India.Google Scholar
  18. Somogyi, M. 1952. Notes on sugar determination. J. Biol. Chem. 95:19–23.Google Scholar
  19. Zaidi, P.H., Rafique, S., Singh, N.N. 2003. Response of maize genotypes to excess moisture stress: morpho-physiological effects & basis of tolerance. Eur J. Agron. 19:383–399.CrossRefGoogle Scholar
  20. Zaidi, P.H., Rafique, S., Rai, P.K., Singh, N.N., Srinivasan, G. 2004. Tolerance to excess moisture in maize (Zea mays L.): Susceptible crop stages and identification of tolerant genotypes. Field Crop Res. 90:189–202.CrossRefGoogle Scholar
  21. Zaidi, P.H., Singh, N.N. 2001. Effect of water logging on growth, biochemical compositions and reproduction in maize. J. Plant Biol. 28:61–69.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

Authors and Affiliations

  • P. H. Zaidi
    • 1
    Email author
  • P. Maniselvan
    • 1
  • R. Sultana
    • 1
  • M. Yadav
    • 1
  • R. P. Singh
    • 1
  • S. B. Singh
    • 1
  • S. Dass
    • 2
  • G. Srinivasan
    • 3
  1. 1.Directorate of Maize ResearchIndian Agricultural Research InstituteNew DelhiIndia
  2. 2.Regional Research Station, CSS HAUKarnalIndia
  3. 3.International Maize & Wheat Improvement Center (CIMMYT)MexicoMexico

Personalised recommendations