Cereal Research Communications

, Volume 35, Issue 3, pp 1405–1413 | Cite as

Changes in Total- and α-amylase Activities and Wheat Germ Agglutinin Content in Wide-Range Herbicide Resistant Wheat Lines

  • Á. Halász
  • E. Horváth-Szanics
  • M. Nagy-Gasztonyi
  • J. PaukEmail author
  • Gy. Hajós
Open Access


Protein sets, enzyme activities and immune reactivity against wheat germ agglutinin in the albumin-globulin fractions of parent and herbicide resistant transgenic wheat lines were studied.

Our results showed significantly increased amylase activities and increased immune reactivity against wheat germ agglutinin in the herbicide resistant transgenic wheat lines, investigated. The amylases and lectins belong to the plant food allergens; this explains why both scientists and consumers are interested in assessing the allergenic potential of plant proteins and the safety assessment of novel foods and GM foods in highlight of food safety. This paper is an important contribution to our database and the understanding of what is going on with genetic engineering of crop plants.


transgenic wheat lines WGA amylase activity food safety 2D-electrophoresis immunoblot 


  1. Aalberse, R.C. 2000. Structural biology of allergens. Journal of Allergy and Clinical Immunology 106:228–238.CrossRefGoogle Scholar
  2. Adessi, C., Miege, C., Albrieux, C., Rabilloud, T. 1997. Two-dimensional electrophoresis of membrane proteins: A current challenge for immobilized pH gradients. Electrophoresis 18:127–135.CrossRefGoogle Scholar
  3. Alrefai, R. 2002. Biotechnology Consultation Note to the File BNF No. 000063, U. S., Food and Drug Administration, Center for Food Safety and Applied Nutrition.Google Scholar
  4. Barro, F., Barcelo, P., Lazzeri, P.A., Shewry, P.R., Martin, A., Ballesteros, J. 2002. Field evaluation and agronomic performance of transgenic wheat. Theoretical and Applied Genetics 105:980–984.CrossRefGoogle Scholar
  5. Barro, F., Barcelo, P., Lazzeri, P.A., Shewry, P.R., Martin, A., Ballesteros, J. 2003. Functional properties and agronomic performance of transgenic Tritordeum expressing high molecular weight glutenin subunit genes 1Ax1 and 1Dx5. Journal of Cereal Science 37:65–70.CrossRefGoogle Scholar
  6. Becker, D., Brettschneider, R., Lörz, H. 1994. Fertile transgenic wheat plants from microprojectile bombardment of scutellar tissue. Plant Journal 5:299–307.CrossRefGoogle Scholar
  7. Christensen, A.H., Quail, P.H. 1996. Ubiquitin promoter-based vectors for high-level expression of selectable and/or screenable marker genes in monootyledonous plants. Transgenic Research 5:213–218.CrossRefGoogle Scholar
  8. Decker, L.A. 1977. Worthington Enzyme Manual. Worthington Biochemical Corp., Freehold, NJ. pp. 173–176.Google Scholar
  9. Felföldi, K., Purnhuaser, L. 1992.: Induction of regenerating callus from immature embryos of 44 wheat and 3 triticale cultivars. Cereal Res. Comm. 20:273–277.Google Scholar
  10. Hajós, Gy., Gelencsér, É., Grant, G., Bardocz, S., Sakhri, M., Duguid, T.J., Newman, A.M., Pusztai, A. 1996. Effect of proteolytic modification and methionine enrichment on the nutritional value of soya albumins for rats. J. Nutritional Biochemistry 7:481–487.CrossRefGoogle Scholar
  11. Horváth-Szanics, E., Szabó, Z., Janáky, T., Pauk, J., Hajós, Gy. 2006. Proteomics as an emergent tool for identification of stress-induced proteins in control and genetically modified wheat lines. Chromatographia 63:S143–S147.CrossRefGoogle Scholar
  12. Krisch, J., Horváth, E., Vágvölgyi, Cs., Tanács, L. 2007. Mobility of herbicides and fungicides in soil and their effects on soil microorganism. Cereal Res. Comm. 35:673–676.CrossRefGoogle Scholar
  13. Matucci, A., Veneri, G., Dalla Pellegrina, C., Zoccatelli, G., Vincenzi, S., Chignola, R., Peruffo, A.D.B., Rizzi, C. 2004. Temperature-dependent decay of wheat germ agglutinin activity and its implications for food processing and analysis. Food Control 15:391–395.CrossRefGoogle Scholar
  14. Matuz, J., Póka, R., Boldizsár, I., Szerdahelyi, E., Hajós, Gy. 2000. Structure and potential allergenic character of cereal proteins. II. Potential allergens in cereal samples. Cereal Res. Comm. 28:433–442.Google Scholar
  15. Mills, E.N.C., Madsen, C., Shewry, P.R., Wichers, H.J. 2003. Bubble formation and stabilization in bread dough. Trends in Food Science & Technology 14:145–156.CrossRefGoogle Scholar
  16. Nehra, N.S., Chibbar, R.N., Leung, N., Caswell, K., Mallard, C., Steinhauser, L., Baga, M., Kartha, K.K. 1994. Self-fertile transgenic wheat plants regenerated from isolated scutellar tissues following microprojectile bombardment with two distinct gene constructs. Plant Journal 5:285–297.CrossRefGoogle Scholar
  17. Osborne, T.B. 1907. The Proteins of the Wheat Kernel. Carnegie Institute, Washington.CrossRefGoogle Scholar
  18. O’Farrell, P.H. 1975. High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250:4007–4021.PubMedGoogle Scholar
  19. Pauk, J., Hänsch, R., Schwarz, G., Nerlich, A., Monostori, T., Mészáros, A., Jenes, B., Kertész, Z., Matuz, J., Schulze, J., Mendel, R.R. 1998. Transzgénikus búza (Triticum aestivum L.) előállítása Magyarországon [Genetic transformation of wheat (Triticum aestivum L.) in Hungary]. Növénytermelés 47:241–251.Google Scholar
  20. Penaa, L.B., Pasquinia, L.A., Tomaroa, M.L., Callego, S.M. 2006. Proteolytic system in sunflower (Helianthus annuus L.) leaves under cadmium stress: Plant Science 171:531–537.CrossRefGoogle Scholar
  21. Przymusiski, R., Ruciska, R., Gwóźdź, E.A. 2004. Increased accumulation of pathogenesis-related proteins in response of lupine roots to various abiotic stresses. Environmental and Experimental Botany 52:53–61.CrossRefGoogle Scholar
  22. Pusztai, Á., Ewen, S.W.B., Grant, G., Brown, D.S., Stewart, J.C., Peumans, W.J., Van Damme, E.J.M., Bardocz, Zs. 1993. Antinutritive effects of wheat germ agglutinin and other N-acetylglucosamine-specific lectins. Br. J. Nutr. 70:313–321.CrossRefGoogle Scholar
  23. Rakszegi, M., Tamás, C., Szűcs, P., Tamás, L., Bedő, Z. 2001. Current status of wheat transformation. Journal of Plant Biotechnology 3:67–81.Google Scholar
  24. Rakszegi, M., Békés, F., Láng, L., Tamás, L., Shewry, P.R., Bedő, Z. 2005. Technological quality of transgenic wheat expressing an increased amount of a HMW glutenin subunit. Journal of Cereal Science 42:15–23.CrossRefGoogle Scholar
  25. Van Damme, E.J.M., Peumans, W.J., Pusztai, Á., Bardocz, Zs. 1998. Handbook of plant lectins: properties and biomedical applications. John Wiley and Sons, West Sussex.Google Scholar
  26. Van der Maarel, M.J.E.C., Van der Veen, B., Uitdehaag, J.C.M., Leemhuis, H., Dijkhuizen, L. 2002. Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology 94:137–155CrossRefGoogle Scholar
  27. Vasil, V., Srivastava, V., Castillo, A.M., Fromm M., Vasil, I.K. 1993. Rapid production of transgenic wheat plants by direct bombardment of cultured immature embryos. Bio/Technology 11:1553–1558.Google Scholar
  28. Weeks, J.T., Anderson, O.D., Blechl, A.E. 1993. Rapid production of multiple independent lines of fertile transgenic wheat (Triticum aestivum). Plant Physiology 102:1077–1084.CrossRefGoogle Scholar
  29. Weil, J.H. 2005. Are genetically modified plants useful and safe? IUBMB Life 57:311–314.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Á. Halász
    • 1
    • 2
  • E. Horváth-Szanics
    • 1
  • M. Nagy-Gasztonyi
    • 1
  • J. Pauk
    • 2
    Email author
  • Gy. Hajós
    • 1
  1. 1.Department of Nutrition ScienceCentral Food Research InstituteBudapestHungary
  2. 2.Cereal Research Non-Profit CompanySzegedHungary

Personalised recommendations