Cereal Research Communications

, Volume 35, Issue 3, pp 1385–1395 | Cite as

Morphological, Cytogenetic and Molecular Identification of a New Triticale

  • J. P. Zhou
  • Z. J. YangEmail author
  • J. Feng
  • X. Z. Zhang
  • G. R. Li
  • Z. L. RenEmail author


Rye (Secale cereale) plays an important role in wheat improvement. Here we report a new triticale, named Fenzhi-1, derived from the wide cross MY11 (Triticum aestivum) × Jingzhou (Secale cereale) after the in vitro rye pollen has been irradiated by He-Ne laser. Morphologically, Fenzhi-1 is characterized by branched-spikes. Genetically, Fenzhi-1 displays stable fertility and immunity to wheat powdery mildew and stripe rust. In situ hybridization (FISH) and seed storage protein electrophoresis revealed that Fenzhi-1 is a new primary hexaploid triticale (AABBRR). The present study not only provides a new method to synthesize an artificial species, but also shows that Fenzhi-1 could be a valuable source for wheat improvement.


triticale He-Ne laser in situ hybridization branched-spike 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bao, W.K. 1984. Evaluation of Primary Strains in Breeding Work of Octoploid Triticale. Proc. Eucarpia Mtg. Triticale, Clermont-Ferrand, France, pp. 121–124.Google Scholar
  2. Baum, M., Lelley, T. 1988. A new method to produce 4× triticales and their application in studying the development of a new polyploid plant. Plant Breeding 100:260–267.CrossRefGoogle Scholar
  3. Bernard, S., Bernard, M. 1987. Creating new forms 4×, 6× and 8× primary triticale associating both complete R and D genomes. Theor. Appl. Genet. 74:55–59.CrossRefGoogle Scholar
  4. Chen, Q., Conner, R.L., Li, H.J., Sun, S.C., Ahmad, F., Laroche, A., Graf, R.J. 2003. Molecular cytogenetic discrimination and reaction to wheat streak mosaic virus and the wheat curl mite in Zhong series of wheat-Thinopyrum intermedium partial amphiploids. Genome 46:135–145.CrossRefGoogle Scholar
  5. Dou, Q.W., Tanaka, H., Nakata, N., Tsujimoto, H. 2006. Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid triticale. Theor. Appl. Genet. 114:41–47.CrossRefGoogle Scholar
  6. Jouve, N., Soler, C. 1996. Triticale genomic and chromosomes history. In: Guedes-Pinto, H. et al. (eds), Triticale: Today and Tomorrow. Kluwer Academic Publishers, Inc. Dordrecht, pp. 91–118.CrossRefGoogle Scholar
  7. Lapinski, B., Lukaszewski, A.J., Sodkiewicz, W., Apolinarska, B. 1980. The recombinants of two 4× wheat in crosses with rye. Hodowla Rosl. Aklim. Nasienn 24:543–550.Google Scholar
  8. Lein, A. 1943. Die genetische Grundlage der Kreuzbarkeit zwischen Weizen und Roggen. Z. Indukt. Abstamm. u. Vererbungslehre 81:28–61.Google Scholar
  9. Leonova, I.N., Dobrovolskaya, O.B., Kaminskaya, L.N., Adonina, I.G., Koren, L.V., Khotyljova, L.V., Salinal, E.A. 2005. Molecular analysis of the Triticale lines with different Vrn gene systems using microsatellite markers and hybridization in situ. Russian Journal of Genetics 41:1014–1020.CrossRefGoogle Scholar
  10. Liu, D.C., Yen, C., Yang, J.L., Zheng, Y.L., Lan, X.J. 1999. The chromosomal locations of high crossability genes in tetraploid wheat Triticum turgidum L. cv. Ailanmai native to Sichuan, China. Euphytica 108:79–82.CrossRefGoogle Scholar
  11. Lukaszewski, A.J., Gustafson, P. 1987. Cytogenetics of triticale. In: Janick, J. (ed.), Plant Breeding Reviews 5. John Wiley & Sons, Inc. New York, pp. 41–93.Google Scholar
  12. Ma, H., Singh, R.P., Mujeeb-Kazi, A. 1995. Suppression/expression of resistance to stripe rust in synthetic hexaploid wheat (Triticum turgidum × T. tauschii). Euphytica 83:87–93.CrossRefGoogle Scholar
  13. Ma, R., Yli-Mattila, T., Pulli, S. 2004a. Phylogenetic relationships among genotypes of worldwide collection of spring and winter ryes (Secale cereale L.) determined by RAPD-PCR markers. Hereditas 140:210–221.CrossRefGoogle Scholar
  14. Ma, X.F., Fang, P., Gustafson, J.P. 2004b. Polyploidzation-induced genome variation in Triticale. Genome 47:839–848.CrossRefGoogle Scholar
  15. Minelli, S., Ceccarelli, M., Mariani, M., De Pace, C., Cionini, P.G. 2005. Cytogenetics of Triticum × Dasypyrum hybrids and derived lines. Cytogenet. Genome Res. 109:385–392.CrossRefGoogle Scholar
  16. Müntzing, A. 1939. Studies on the properties and the ways of production of rye-wheat amphidiploids. Hereditas 25:387–430.CrossRefGoogle Scholar
  17. O’Mara, J.G. 1953. The cytogenetics of Triticale. Bot. Rev. 19:587–605.CrossRefGoogle Scholar
  18. Peng, Z.S., Liu, D.C., Yen, C., Yang, J.L. 1998. Crossability of tetraploid wheat landraces native to Sichuan, Shaanxi, Gansu and Xinjiang provinces, China with rye. Genetic Resources and Crop Evolution 45:57–62.CrossRefGoogle Scholar
  19. Pennell, A.L., Halloran, G.M. 1983. Inheritance of supernumerary spikelet development in wheat. Euphytica 32:767–776.CrossRefGoogle Scholar
  20. Pickering, R.A., Malyshev, S., Künzel, G., Johnston, P.A., Korzun, V., Menke, M., Schubert, I. 2000. Locating introgressions of Hordeum bulbosum chromatin with the H. vulgare genome. Theor. Appl. Genet. 100:27–31.CrossRefGoogle Scholar
  21. Rayburn, A.L., Gill, B.S. 1986. Molecular identification of the D-genome chromosomes of wheat. J. Hered. 77:93–104.CrossRefGoogle Scholar
  22. Schwarzacher, T. 2003. DNA, chromosomes, and in situ hybridization. Genome 46:953–962.CrossRefGoogle Scholar
  23. Sears, E.R., Miller, T.E. 1985. The history of Chinese Spring wheat. Cereal Res. Comm. 13:261–263.Google Scholar
  24. Tams, S.H., Bauer, E., Oettler, G., Melchinger, A.E. 2004. Genetic diversity in European winter Triticale determined with SSR markers and coancestry coefficient. Theor. Appl. Genet. 108:1385–1391.CrossRefGoogle Scholar
  25. Tikhenko, N.D., Tsvetkova, N.V., Voilokov, A.V. 2003a. Analysis of the effect of the genotype of parental rye lines on quantitative trait formation in primary octoploid triticate: plant height. Russian Journal of Genetics 39:52–56.CrossRefGoogle Scholar
  26. Tikhenko, N.D., Tsvetkova, N.V., Voilokov, A.V. 2003b. The effect of parental genotypes of rye lines on the development of quantitative traits in primary octoploid triticale: spike fertility. Russian Journal of Genetics 39:295–299.CrossRefGoogle Scholar
  27. Tohver, M., Kann, A., Täht, R., Mihhalevski, A., Hakman, J. 2005. Quality of triticale cultivars suitable for growing and bread-making in northern conditions. Food Chemistry 89:125–132.CrossRefGoogle Scholar
  28. Vershinin, A.V., Schwarzacher, T., Heslop-Harrison, J.S. 1995. The large-scale genomic organization of repetitive DNA families at the telomeres of rye chromosomes. The Plant Cell 7:1823–1833.PubMedPubMedCentralGoogle Scholar
  29. Wilson, A.S. 1876. Wheat and rye hybrids. Edinburgh Bat. Sac. Trans. 12:286–288.CrossRefGoogle Scholar
  30. Yang, Z.J., Li, G.R., Feng, J., Jiang, H.R., Ren, Z.L. 2005. Molecular cytogenetic characterization and disease resistance observation of wheat-Dasypyrum breviaristatum partial amphiploid and its derivatives. Hereditas 142:80–85.CrossRefGoogle Scholar
  31. Yang, Z.J., Li, G.R., Jiang, H.R., Ren, Z.L. 2001. Expression of nucleolus, endosperm storage proteins and disease resistance in an amphiploid between Aegilops tauschii and Secale silvestre. Euphytica 119:317–321.CrossRefGoogle Scholar
  32. Yu, Z., Yun, J.F., Ma, Y.Z., Xin, Z.Y. 2004. Identification of the triploid chromosomes of Elymus canadensis L. × Hordeum brivisubulatum Link. by Genome in situ hybridization. Acta Genetica Sinica 31:735–739.PubMedGoogle Scholar
  33. Zhang, X.Z., Zeng, J.F. 1995. A study of the effect on wheat distant hybridization by He-Ne laser irradiation. Laser Journal 16:83–88.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

Authors and Affiliations

  1. 1.School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengdu, SichuanP.R. China
  2. 2.Key Laboratory for Plant Genetics and BreedingSichuan Agricultural UniversityYa’an city, SichuanP.R. China

Personalised recommendations