Cereal Research Communications

, Volume 35, Issue 3, pp 1367–1374 | Cite as

Identification and Mapping Quantitative Trait Loci for Stem Reserve Mobilisation in Wheat (Triticum aestivum L.)

  • K. F. M. Salem
  • M. S. Röder
  • A. BörnerEmail author


Quantitative trait loci (QTL) analysis was carried out with a set of 114 recombinant inbred lines (RILs) from the International Triticeae Mapping Initiative (ITMI) population of ‘W7984’ × ‘Opata 85’ to identify genomic regions controlling traits related to post-anthesis drought tolerance of wheat (Triticum aestivum L.). In two experiments performed in Gatersleben in 2001 and 2003, the amount stem reserves mobilisation was estimated by measuring of changes in 1000-grain weight after chemical desiccation treatment. QTLs for stem reserves mobilisation (Srm) were mapped on chromosomes 2D, 5D and 7D. The mapping positions obtained in the present investigation are discussed with respect to studies on drought tolerance performed in wheat previously. QTLs for drought tolerance preferentially appeared in homoeologous regions at distal parts of the group 7 chromosomes.


chemical desiccation genetic mapping quantitative trait loci (QTLs) post-anthesis drought tolerance stem reserves mobilisation wheat 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Balint, A.F., Röder, M.S., Hell, R., Gabor, G., Börner, A. 2007. Mapping of QTLs affecting copper tolerance and the Cu, Fe, Mn and Zn contents in the shoots of wheat seedlings. Biol. Plant. 51:129–134.CrossRefGoogle Scholar
  2. Blum, A. 1996. Crop responses to drought and the interpretation of adaptation. Plant Growth Regul. 20:135–148.CrossRefGoogle Scholar
  3. Blum, A., Mayer, J., Golan, G. 1983a. Chemical desiccation of wheat plants as a simulator of post-anthesis stress. II. Relations to drought stress. Field Crops Res. 6:149–155.CrossRefGoogle Scholar
  4. Blum, A., Poyarkova, H., Golan, G., Mayer, J. 1983b. Chemical desiccation of wheat plants as a simulator of post-anthesis stress. I. Effects on translocation and kernel growth. Field Crops Res. 6:51–58.CrossRefGoogle Scholar
  5. Blum, A., Sinmena, B., Mayer, J., Golan, G., Shpiler, L. 1994. Stem reserve mobilisation supports wheat-grain filling under heat stress. Aust. J. Plant Physiol. 21:771–781.Google Scholar
  6. Börner, A., Schumann, E., Fürste, A., Cöster, H., Leithold, B., Röder, M.S., Weber, W.E. 2002. Mapping of quantitative trait loci determining agronomic important characters in hexaploid wheat (Triticum aestivum L.). Theor. Appl. Genet. 105:921–936.CrossRefGoogle Scholar
  7. Boyer, J.S. 1982. Plant productivity and environment. Science 218:443–448.CrossRefGoogle Scholar
  8. Dobrovolskaya, O., Pshenichnikova, T.A., Lohwasser, U., Röder, M.S., Börner, A. 2007. Molecular mapping of genes determining hairy leaf character in wheat with respect to other species of the Triticeae. Euphytica (in press).Google Scholar
  9. Faris, J.D., Anderson, J.A., Francl, L.J., Jordahl, J.G. 1996. RFLP mapping of tan spot resistance genes in wheat. In: McGuire, P.E, Qualset, C.O. (eds), Proc 5th and 6th Public Workshop Int Triticeae Mapping Initiative, Genetic Resources Conservation Program, Division of Agriculture and Natural Resources, University of California, Davis, pp. 179.Google Scholar
  10. Groos, C., Robert, N., Bervas, E., Charmet, G. 2003. Genetic analysis of grain protein-content, grain yield and thousand-kernel weight in bread wheat. Theor. Appl. Genet. 106:1032–1040.CrossRefGoogle Scholar
  11. Huang, X.Q., Cöster, H., Ganal, M.W., Röder, M.S. 2003. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theor. Appl. Genet. 106:1379–1389.CrossRefGoogle Scholar
  12. Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.CrossRefGoogle Scholar
  13. Landjeva, S., Neumann, K., Lohwasser, U., Börner, A. 2007. Molecular mapping of genomic regions associated with wheat seedling growth under osmotic stress. Biol. Plant (in press).Google Scholar
  14. Lohwasser, U., Röder, M.S., Börner, A. 2005. QTL mapping of the domestication traits pre-harvest sprouting and dormancy in wheat (Triticum aestivum L.). Euphytica 143:247–249.CrossRefGoogle Scholar
  15. Marino, C.L., Nelson, J.C., Lu, Y.H., Sorrells, M.E., Leroy, P., Tuleen, N.A., Lopes, C.R., Hart, G.E. 1996. Molecular genetic maps of the group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell.). Genome 39:359–366.CrossRefGoogle Scholar
  16. McIntosh, R.A., Hart, G.E., Devos, K.M., Gale, M.D., Rogers, W.J. 1998. Catalogue of gene symbols for wheat. In: Slinkard, A.E. (ed.), Proc 9th Int Wheat Genet Symp, vol. 5, University Extension Press, University of Saskatchewan, Saskatoon, pp. 1–236.Google Scholar
  17. Nelson, J.C. 1997. QGENE: software for mapping based genomic analysis and breeding. Mol. Breed. 3:239–245.CrossRefGoogle Scholar
  18. Nelson, J.C., Autrique, J.E., Fuentes-Davila, G., Sorrells, M.E. 1998. Chromosomal location of genes for resistance to Karnal bunt in wheat. Crop Sci. 38:231–236.CrossRefGoogle Scholar
  19. Nelson, J.C., Singh, R.P., Autrique, J.E., Sorrells, M.E. 1997. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 37:1928–1935.CrossRefGoogle Scholar
  20. Nelson, J.C., van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Merlino, M., Atkinson, M., Leroy, P. 1995a. Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524.CrossRefGoogle Scholar
  21. Nelson, J.C., van Deynze, A.E., Autrique, E., Sorrells, M.E., Lu, Y.H., Negre, S., Bernard, M., Leroy, P. 1995b. Molecular mapping of wheat. Homoeologous group 3. Genome 38:525–533.CrossRefGoogle Scholar
  22. Nelson, J.C., Sorrells, M.E., van Deynze, A.E., Lu, Y.H., Atkinson, M., Bernard, M., Leroy, P., Faris, J.D., Anderson, J.A. 1995c. Molecular mapping of wheat: Major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731.PubMedPubMedCentralGoogle Scholar
  23. Nicholas, M.E., Turner, N.C. 1993. Use of chemical desiccants and senescing agent to select wheat lines maintaining stable grain size during post anthesis drought. Field Crops Res. 31:155–171.CrossRefGoogle Scholar
  24. Pestsova, E., Ganal, M.W., Röder, M.S. 2000. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697.CrossRefGoogle Scholar
  25. Quarrie, S.A., Steed, A., Calestani, C., Semikhodskii, A., Lebreton, C., Chinoy, C., Steele, N., Pljevljakusic, D., Waterman, E., Weyen, J., Schondelmaier, J., Habash, D.Z., Farmer, P., Saker, L., Clarkson, D.T., Abugalieva, A., Yessimbekova, M., Turuspekov, Y., Abugalieva, S., Tuberosa, R., Sanguineti, M-C., Hollington, P.A., Aragués, R., Royo, A., Dodig, D. 2005. A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor. Appl. Genet. 110:865–880.CrossRefGoogle Scholar
  26. Regan, K.L., Whan, B.R., Turner, N.C. 1993. Evaluation of chemical desiccation as a selection technique for drought resistance in a dryland wheat breeding program. Aust. J. Agric. Res. 44:1683–1691.CrossRefGoogle Scholar
  27. Reynolds, M.P., Skovmand, B., Trethowan, R.M., Pfeiffer, W.H. 2000. Evaluating a conceptual model for drought tolerance. In: Ribaut, J.M., Poland, D. (eds), Molecular Approaches for the Genetic Improvement of Cereals for Stable Production in Water-Limited Environments. Mexico, DF (Mexico), CIMMYT, pp. 49–53.Google Scholar
  28. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M-H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  29. Simon, M.R., Ayala, F.M., Cordo, C.A., Röder, M.S., Börner, A. 2004. Molecular mapping of quantitative trait loci determining resistance to septoria tritici blotch (Mycosphaerella graminicola) in wheat. Euphytica 138:41–48.CrossRefGoogle Scholar
  30. Singh, R.P., Nelson, J.C., Sorrells, M.E. 2000. Mapping Yr28 and other genes for resistance to stripe rust in wheat. Crop Sci. 40:1148–1155.CrossRefGoogle Scholar
  31. Sourdille, P., Perretant, M.R., Charmet, G., Leroy, P., Gautier, M.F., Joudrier, P., Nelson, J.C., Sorrells, M.E., Bernard, M. 1996. Linkage between RFLP markers and genes affecting kernel hardiness in wheat. Theor. Appl. Genet. 93:580–586.CrossRefGoogle Scholar
  32. van Deynze, A.E., Dubcovsky, J., Gill, K.S., Nelson, J.C., Sorrells, M.E., Dvorak, J., Gill, B.S., Lagudah, E.S., McCouch, S.R., Appels, R. 1995. Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2007

Authors and Affiliations

  1. 1.Leibniz-Institut für Pflanzengenetik und KulturpflanzenforschungGaterslebenGermany

Personalised recommendations