Cereal Research Communications

, Volume 34, Issue 4, pp 1239–1246 | Cite as

Low nitrogen tolerance in tropical quality protein maize (Zea mays L.): value of predictive traits

  • P. MonneveuxEmail author
  • G. Cabon
  • C. Sánchez


In the tropics, maize (Zea mays L.) is often grown under low N conditions. Information on the respective role of N uptake and partitioning at anthesis in determining grain yield under low N is scarce. Senescence traits have been proposed as secondary traits to select for low N tolerance, but the stability of their association with yield under different environmental conditions has been rarely described. In the present study we analyzed the associations between grain yield, N uptake and partitioning at anthesis, dry matter matter partitioning, and senescence traits during two seaons in QPM (quality protein maize) hybrids. Association between grain yield and N uptake at anthesis, when found, was mainly explained by a close relationship between grain yield and above-ground biomass. No relationship was found between grain yield and N partitioning at anthesis. In both seasons grain yield was significantly positively associated with ear to above-ground biomass and ear to tassel weight ratios. The magnitude of the correlation between grain yield and senescence traits highly depended on climatic conditions.


Zea mays L. N deficiency N partitioning N uptake senescence QPM (quality protein maize) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bänziger M., Edmeades G.O., Lafitte H.R. 1999. Selection for drought tolerance increases maize yields across a range of nitrogen levels. Crop Sci. 39: 1035–1040.CrossRefGoogle Scholar
  2. Bänziger M., Edmeades G.O., Lafitte H.R. 2002. Physiological mechanisms contributing to the increased N stress tolerance of tropical maize selected for drought tolerance. Field Crops Res. 75: 223–233.CrossRefGoogle Scholar
  3. Bänziger M., Lafitte H.R. 1997. Efficiency of secondary traits for improving maize for low-nitrogen target environments. Crop Sci. 37: 1110–1117.CrossRefGoogle Scholar
  4. Below F.E., Cazerta J.O., Seebauer J.R. 2000. Carbon/nitrogen interactions during ear and kernel development in maize. In: Westgate M.E and Boote K. (eds.), Physiology and modelling kernel set in maize. CSSA Special Publication 29, Madison, pp. 15–24.Google Scholar
  5. Binford G.D., Blackmer A.M. 1993. Visually rating the nitrogen status of corn. J. Prod. Agric. 6: 41–46.CrossRefGoogle Scholar
  6. Dowswell C.R., Paliwal R.L., Cantrell R.P. 1996. Maize in the Third World, Boulder, Colorado, Westview Press.Google Scholar
  7. Dwyer L.M., Tollenaar M., Houwing L. 1991. A nondestructive method to monitor leaf greenness in corn. Can. J. Plant Sci. 71: 505–509.CrossRefGoogle Scholar
  8. Fox R.H., Piekielek W.P., McNeal K.E. 2000. Comparison of late-season diagnostic tests for predicting nitrogen status of corn. Agron. J. 93: 590–597.CrossRefGoogle Scholar
  9. Francis D.D., Schepers J.S., Vigil M.F. 1993. Post-anthesis nitrogen loss from corn. Agron. J. 85: 659–663.CrossRefGoogle Scholar
  10. Jacobs B.C., Pearson C.J. 1991. Potential yield of maize, determined by rates of growth and development of ears. Field Crops Res. 27: 281–298.CrossRefGoogle Scholar
  11. Lafitte H.R., Edmeades G.O. 1994. Improvement for tolerance to low soil nitrogen in tropical maize. I. Selection criteria. Field Crops Res. 39: 1–14.CrossRefGoogle Scholar
  12. Lafitte H.R., Edmeades G.O. 1995. Stress tolerance in tropical maize is linked to constitutive changes in ear growth characteristics. Crop Sci. 35: 820–826.CrossRefGoogle Scholar
  13. Machado A.T., Magalhães J.R. 1995. Melhoramento de milho para uso eficiente de N sob condições de estresse. In: Simpósio internacional sobre estresse ambiental: o milho en perspectiva, Sete Lagoas, Brasil. Embrapa-CNPMS, pp. 321–342.Google Scholar
  14. Machado A.T., Sodek L., Fernandes M.S. 2001. N-partitioning, nitrate reductase and glutamine synthase activities in two contrasting varieties of maize. Pesq. Agropec. Bras. 36: 249–256.CrossRefGoogle Scholar
  15. McCown R.L., Keating B.A., Probert M.E., Jones R.K. 1992. Strategies for sustainable crop production in semi-arid Africa. Outlook Agric. 21: 21–31.CrossRefGoogle Scholar
  16. McCullough D.E, Girardin P., Mihajlovic M., Aguilera A., Tollenaar M. 1994. Influence of N supply on development and dry matter accumulation of an old and new maize hybrid. Can. J. Plant Sci. 74: 471–477.CrossRefGoogle Scholar
  17. Mertz E.T., Bates L.S., Nelson O.E. 1964. Mutant gene that changes protein composition and increases lysine content of maize endosperm. Science 145: 279–280.CrossRefGoogle Scholar
  18. Monneveux P., Sanchez C., Beck D., Edmeades G.O. 2005a. Drought tolerance improvement in tropical maize source populations: evidence of progress. Crop Sci. 46: 180–191.CrossRefGoogle Scholar
  19. Monneveux P., Zaïdi P.H., Sanchez C. 2005b. Population density and low nitrogen affect yield-associated trait in tropical maize. Crop Science 45: 535–545.CrossRefGoogle Scholar
  20. Pan W.L., Cambereto J.J., Jackson W.A., Moll R.H. 1986. Utilization of previously accumulated and concurrently absorbed nitrogen during reproductive growth in maize. Plant Physiol. 82: 247–253.CrossRefGoogle Scholar
  21. Peoples M.B., Herridge D.F., Ladha J.K. 1995. Biological N fixation: an efficient source of N for sustainable agricultural production. Plant Soil 174: 3–28.CrossRefGoogle Scholar
  22. Pixley K.V., Bjarnason M.S. 1993. Stability of grain yield, endosperm modification, and protein quality of hybrid and open-pollinated quality protein maize (QPM) cultivars. Crop Sci. 42: 1882–1890.CrossRefGoogle Scholar
  23. Presterl T., Groh S., Landbeck M., Seitz G., Schmidt W., Geiger H.H. 2002. Nitrogen uptake and utilization efficiency of European maize hybrids developed under conditions with low and high nitrogen input. Plant Breeding 121: 480–486.CrossRefGoogle Scholar
  24. Rajcan I., Tollenaar M. 1999. Source:sink ratio and leaf senescence in maize: I. Dry matter accumulation and partitioning during grain filling. Field Crop Res 60: 245–253.CrossRefGoogle Scholar
  25. SAS Institute, 1987. SAS/STAT user’s guide, version 6. SAS Inst., Inc., Cary, NC.Google Scholar
  26. Srinivasan G., Cordova H., Vergara N., Rodríguez E., Urrea C. 2002. Potential of quality protein maize for promoting nutritional security in Asia. In: New directions for a diverse planet: Proceedings of the 4th Int. Crop Science Congress, Brisbane, Australia.Google Scholar
  27. Ta C.T., Weiland R.T. 1992. Nitrogen partitioning in maize during ear development. Crop Sci. 32: 443–451.CrossRefGoogle Scholar
  28. Tollenaar M., Dwyer L.M., Stewart DD.W. 1992. Ear and kernel formation in maize hybrids representing three decades of grain yield improvement in Ontario. Crop Sci. 32: 432–438.CrossRefGoogle Scholar
  29. Tsai C.Y., Huber D.M., Warren H.L., Lyznik A. 1991. Nitrogen uptake and redistribution during maturation of maize hybrids. J. Sci. Food Agric. 57: 175–187.CrossRefGoogle Scholar
  30. Uhart S.A., Andrade F.H. 1995. Nitrogen deficiency in maize: I. Effects on crop growth, development, dry matter partitioning, and kernel set. Crop Sci. 35: 1376–1383.CrossRefGoogle Scholar
  31. van Beem J., Smith M.E., Zobel R.W. 1998. Estimating root mass in maize using a portable capacitance meter. Agron. J. 90: 566–570.CrossRefGoogle Scholar
  32. Wolfe D.W., Henderson D.W., Hsiao T.C., Alvino A. 1988. Interactive water and nitrogen effects on senescence of maize. I. Leaf area duration, nitrogen distribution, and yield. Agron. J. 80: 859–864.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

Authors and Affiliations

  1. 1.CIMMYTMexico D.F.Mexico
  2. 2.ENESADDijon cedexFrance

Personalised recommendations