Cereal Research Communications

, Volume 34, Issue 4, pp 1223–1229 | Cite as

Chromosome pairing in diploid substitution rye and addition rye with wheat chromosomes

  • B. Apolinarska
Open Access


Chromosome pairing was studied at metaphase I in PMCs by C-banding in diploid rye plants with 1–3 monosomic-substitution wheat chromosomes and 1 monosomic-addition wheat chromosome. In plants with chromosome 5A, no univalents were found. In other plants with 1 monosomic-substitution wheat chromosome (7A, 2A, or 1A), only rye univalents occurred, on average 0.02–0.18 per PMC. Wheat chromosomes paired with homoeologous rye chromosomes in bivalents. The addition chromosome 6A occurred as a univalent with a frequency of 0.92 per PMC. In plants with 2–3 monosomic-substitution wheat chromosomes, no univalents were found. In 2 diploid rye plants with substitution chromosomes 2A, 5A and in 1 plant with 2A, 7A, wheat chromosomes paired mainly with rye homoeologues, but sometimes they paired with each other, forming heteromorphic wheat bivalent. In the other 3 plants with wheat chromosomes 2A, 5A, 2 plants with 2A, 7A, and 4 plants with 5A, 7A, a reverse situation was observed: nonhomoeologous wheat chromosomes paired with one another (forming a heteromorphic bivalent) more frequently than with rye homoeologues. In plants with 3 substitution wheat chromosomes (2A, 5A, 7A), 2 of them paired with each other, forming first of all a heteromorphic ring bivalent, while the third wheat chromosome paired with a rye chromosome in a ring bivalent or rarely in a rod bivalent. Wheat chromosomes sporadically occurred in multivalents. The presented data show that the rye genome promotes both homoeologous pairing of wheat and rye chromosomes and nonhomoeologous pairing of wheat chromosomes.

Key words

C-banding chromosome pairing monosomic wheat chromosome substitution diploid rye 


  1. Apolinarska B. 1996. Tetraploid rye with wheat genetic material. In: Plant Cytogenetics (Maluszynska J. ed.) Silesian Univ. Katowice: 206–209.Google Scholar
  2. Apolinarska B. 2003a. Chromosome pairing in tetraploid rye with monosomic-substitution wheat chromosomes. J. Appl. Genet. 44: 119–128.PubMedGoogle Scholar
  3. Apolinarska B. 2003b. Substitutions, additions and translocations of wheat chromosomes in diploid rye. Bull. Plant Breed. and Acclim. Inst. 230: 195–203.Google Scholar
  4. Apolinarska B. 2003c. The influence of rye cytoplasm on meiotic stability of tetraploid Secalotriticum. J. Appl. Genet. 44: 129–137.PubMedGoogle Scholar
  5. Apolinarska B., Wojciechowska B. 2003. Production of diploid rye/wheat chromosome additions and substitutions. Cereal Res. Comm. 31: 73–79.Google Scholar
  6. Chrząstek M. 2000. Wpływ dodanych i podstawionych chromosomów żyta (Secale cereale L.) cv. Dankowskie Złote na mejozę oraz niektóre cechy morfologiczne i fizjologiczne pszenicy (Triticum aestivum L.) cv. Grana. Rozprawy Naukowe Akademii Rolniczej w Lublinie (242): 1–59.Google Scholar
  7. Cuadrado C., Romero C., Lacadena J.R. 1991. Meiotic pairing control in wheat-rye hybrids. I. Effect of different wheat chromosome arms on homoeologous groups 3 and 5. Genome 34: 72–75.CrossRefGoogle Scholar
  8. Devos K.M., Atkinson M.D., Chinoy C.N., Francis H.A., Harcourt R.L., Koebner R.M.D., Liu C.J., Masojć P., Xie D.X., Gale M.D. 1993. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor. Appl. Genet. 85: 673–680.CrossRefGoogle Scholar
  9. Driscoll C.J. 1972. Genetic suppression of homoeologous chromosome pairing in hexaploid wheat. Can. J. Genet. Cytol. 14: 39–42.CrossRefGoogle Scholar
  10. Dworak J. 1977. Effect of rye on homoeologous chromosome pairing in wheat x rye hybrids. Can. J. Genet. Cytol. 19: 549–556.CrossRefGoogle Scholar
  11. Friebe B., Gill B.S. 1994. C-band polymorphism and structural rearrangements detected in common wheat (Triticum aestivum). Euphytica 78: 1–5.Google Scholar
  12. Liu C.J., Atkinson M.D., Chinoy C.N., Devos K.M., Gale M.D. 1992. Nonhomoeologous translocations between group 4, 5 and 7 chromosomes within wheat and rye. Theor. Appl. Genet. 83: 305–312.CrossRefGoogle Scholar
  13. Lukaszewski A.J., Apolinarska B., Gustafson J.P., Krolow K.D. 1987. Chromosome pairing and aneuploidy in tetraploid triticale. II. Unstabilized karyotypes. Genome 29: 562–569.CrossRefGoogle Scholar
  14. Lukaszewski A.J., Gustafson J.P. 1983. Translocations and modifications of chromosomes in triticale x wheat hybrids. Theor. Appl. Genet. 64: 239–248.CrossRefGoogle Scholar
  15. Lukaszewski A.J., Porter D.R., Baker C.A., Rybka K., Łapiński B. 2001. Attempts to transfer Russian resistance from a rye chromosome in Russian triticales to wheat. Crop Science 41: 1743–1749.CrossRefGoogle Scholar
  16. Mello-Sampayo T. 1971. Genetic regulation of meiotic chromosome pairing by chromosome 3D of Triticum aestivum. Nature. New. Biol. 230: 22–23.CrossRefGoogle Scholar
  17. Miller T.E., Riley R. 1972. Meiotic chromosome pairing in wheat-rye combinations. Genet. Iber. 24: 241–250.Google Scholar
  18. Naranjo T., Lacadena J. R., Giráldez R. 1979. Interaction between wheat and rye genomes of homologous and homoeologous pairing. Zeit. Pflanzenzücht. 82: 289–305.Google Scholar
  19. Orellana J., Cermeno M.C., Lacadena J.R. 1984. Meiotic pairing in wheat-rye addition and substitution lines. Can. J. Genet. Cytol. 26: 25–33.CrossRefGoogle Scholar
  20. Riley R., Chapman V. 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature 182: 713–715.CrossRefGoogle Scholar
  21. Riley R., Chapman V., Miller T.E. 1973. The determination of meiotic chromosome pairing. Proc. 4th Int. Wheat Genet. Symp. Columbia: 731–738.Google Scholar
  22. Sears E.R. 1977. An induced mutant with homoeologous pairing in wheat. Can. J. Genet. Cytol. 19: 585–593.CrossRefGoogle Scholar
  23. Wall A.M., Riley R., Chapman V. 1971. Wheat mutants permitting homoeologous meiotic chromosome pairing. Genet. Res. 18: 311–328.CrossRefGoogle Scholar
  24. Zeller F.J., Koller O.I. 1981. Identification of a 4A/7R and 7B/4R wheat and rye chromosome. Theor. Appl. Genet. 59: 33–37.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • B. Apolinarska
    • 1
  1. 1.Institute of Plant GeneticsPolish Academy of SciencesPoznańPoland

Personalised recommendations