Cereal Research Communications

, Volume 34, Issue 4, pp 1215–1222 | Cite as

Induction of chromosome rearrangements in a 4H(4D) wheat-barley substitution using a wheat line containing a Ph suppressor gene

  • A. SepsiEmail author
  • K. Németh
  • I. Molnár
  • É. Szakács
  • M. Molnár-Láng
Open Access


The aim of the experiments was to develop translocation lines by inducing homoeologous chromosome pairing in a 4H(4D) wheat-barley substitution line previously developed in Martonvásár. It was hoped to incorporate various segments of the barley 4H chromosome from the 4H(4D) substitution into wheat. Observations were made on the frequency with which wheat-barley translocations appeared in the F2 progeny grains from a cross between the line CO4-1, which carries the Ph suppressor gene from Aegilops speltoides and thus induces a high level of homoeologous chromosome pairing, and the 4H(4D) wheat-barley substitution line, and on which chromosome segments were involved in the translocations. The translocations were identified by means of genomic in situ hybridisation. Of the 117 plants examined, three (2.4 %) were found to contain translocations. A total of four translocations were observed, as one plant contained two different translocations. The translocations consisted of one centric fusion, two dicentric translocations and one acrocentric chromosome. Plants carrying translocations were raised in the phytotron and the selection of homozygous translocation lines was commenced from the F3 progeny grains.

Index words

Triticum aestivum Aegilops speltoides Ph suppressor gene wheat-barley translocations 


  1. Chen, P.D. — Tsujimoto, H. — Gill, B.S.: 1994. Transfer of Ph1 genes promoting homoeologous pairing from Triticum speltoides to common wheat. Theor. Appl. Genet., 88:97–101.CrossRefGoogle Scholar
  2. Devos, K. M. — Gale, M. D.: 2000. Genome relationships: the grass model in current research. Plant Cell, 12: 637–646.CrossRefGoogle Scholar
  3. Dvorak, J.: 1972. Genetic variability in Aegilops speltoides affecting homoeologous pairing in wheat. Can. J. Cytol., 14: 371–380.CrossRefGoogle Scholar
  4. Fedak, G.: 1997. Increased homoeologous chromosome pairing in Hordeum vulgare × Triticum aestivum hybrids. Nature, 266: 529–530.CrossRefGoogle Scholar
  5. Feldman, M.: 1988. Cytogenetic and molecular approaches to alien gene transfer in wheat. In: Miller, T.E., Koebner, R.M.D. (eds.), Proc. 7th International Wheat Genetics Symposium, Cambridge, pp 23–32.Google Scholar
  6. Friebe, B. — Jiang, J. — Raupp, W. J. — McIntosh, R.A. — Gill, B.S.: 1996. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica, 91: 59–87.CrossRefGoogle Scholar
  7. Islam, A. K. M. R. — Shepherd, K.W. — Sparrow, D. H. B.: 1978. Production and characterization of wheat-barley addition lines. In: S. Ramunujam (ed.), Proc. 5th Int. Wheat Genet. Symp., New Delhi, India, pp. 356–371.Google Scholar
  8. Islam, A. K. M. R. — Shepherd, K. W. — Sparrow, D. H. B.: 1981. Isolation and characterization of euplasmic wheat-barley chromosome addition lines. Heredity, 46: 160–174.CrossRefGoogle Scholar
  9. Islam, A. K. M. R. — Shepherd, K. W.: 1992. Production of wheat-barley recombinant chromosomes through induced homoeologous pairing. 1. Isolation of recombinants involving barley arms 3HL and 6HL. Theor. Appl. Genet., 83: 489–494.CrossRefGoogle Scholar
  10. Jauhar, P. P. — Chibbar, R. N.: 1999. Chromosome-mediated and direct gene transfers in wheat. Genome, 42: 570–583.CrossRefGoogle Scholar
  11. Kruse, A.: 1973. Hordeum × Triticum hybrids. Hereditas, 73: 157–161.CrossRefGoogle Scholar
  12. Kreis, M. — Williamson, M. S. — Shewry, P. R. — Sharp, P. — Gale, M.: 1988. Identification of a second locus encoding β-amylase on chromosome 2 of barley. Genet. Res., Camb., 51: 13–16.CrossRefGoogle Scholar
  13. Le, H. T. — Armstrong, K. C. — Miki, B.: 1989. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol. Biol. Rep., 7: 150–158.CrossRefGoogle Scholar
  14. Linc, G. — Friebe, B. — Kynast, R. G. — Molnár-Láng, M. — Kőszegi, B. — Sutka, J. — Gill, B. S.: 1999. Molecular cytogenetic analysis of Aegilops cylindrica. Host. Genome, 42: 497–503.CrossRefGoogle Scholar
  15. Linc, G. — Molnár-Láng, M.: 2003. Producing new wheat/barley disomic additions in winter wheat background using different methods and analyse them by molecular cytogenetic techniques Növénytermelés, 52:3–13. (Summary in English).Google Scholar
  16. Molnar, I.-Linc, G.-Dulai, S.-D.Nagy, E.-Molnár-Láng, M.: 2005. Ability of chromosome 4H to compensate for 4D in response to drought stress in a newly developed wheat-barley 4H(4D) disomic substitution line. Submitted to Plant BreedingGoogle Scholar
  17. Molnár-Láng, M. — Sutka, J. — Barnabás, B. — Sági, L. — Belea, A.: 1985. Production of barley (Hordeum vulgare) ×wheat (Triticum aestivum L.). Növénytermelés, 34: 257–261. (Summary in English).Google Scholar
  18. Molnár-Láng, M. — Sutka, J.: 1994. The effect of temperature on seed set and embryo development in reciprocal crosses of wheat and barley. Euphytica, 78: 53–58.Google Scholar
  19. Molnár-Láng, M. — Linc, G. — Friebe, B. R. — Sutka, J.: 2000. Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica, 112: 117–123.CrossRefGoogle Scholar
  20. Reader, S. M. — Abbo, S. — Purdie, K. A. — King, I. P. — Miller, T. E.: 1994. Direct labelling of plant chromosomes by rapid in situ hybridization. Trends Genet., 10: 265–266.CrossRefGoogle Scholar
  21. Riley, R.-Chapman V.: 1958. Genetic control of the cytologically diploid behaviour of hexaploid wheat. Nature, 182:713–715.CrossRefGoogle Scholar
  22. Riley, R. — Kimber, G. — Chapman, V.: 1961. Origin of genetic control of diploid-like behavior of polyploid wheat. J. Hered., 52: 22–25.CrossRefGoogle Scholar
  23. Riley, R. — Kempana, C.: 1963. The homoeologous nature of the non-homologous meiotic pairing in Triticum aestivum deficient for chromosome V (5B). Hered., 18: 287–306.CrossRefGoogle Scholar
  24. Riley, R. — Chapman, V. — Johnson, R.: 1968. The incorporation of alien disease resistance in wheat by genetic interference with the regulation of meiotic chromosome synapsis. Genet. Res., Camb., 12: 199–213CrossRefGoogle Scholar
  25. Schwarzacher, T. — Leitch, A. R. — Bennett, M. D. — Heslop-Harrison, J. S.: 1989. In-situ localization of parental genomes in a wide hybrid. Ann. Bot., London, 64: 315–324.CrossRefGoogle Scholar
  26. Schwarzacher, T. — Anamthawat-Jónsson, K. — Harrison, G. E. — Islam, A. K. M. R. — Jia, J. Z. — King, I. P. — Leitch, A. R. — Miller, T. E. — Reader, S. M. — Rogers, W. J. — Shi, M. — Heslop-Harrison, J. S.: 1992. Genomic in situ hybridization to identify alien chromosomes and chromosome segments in wheat. Theor. Appl. Genet., 84: 778–786.CrossRefGoogle Scholar
  27. Sears, E. R.: 1952. Homoeologous chromosomes in Triticum aestivum. Genet. 37: 624.Google Scholar
  28. Sears, E. R. — Okamoto, M.: 1958. Intergenomic chromosome relationships in hexaploid wheat. Proc. 10th Int. Cong. Genet., 2: 258–259.Google Scholar
  29. Sears, E. R.: 1973. Agropyron-Wheat transfers induced by homoeologous pairing. Proc. 4th Int. Wheat Genet. Symp., Columbia, 191–200.Google Scholar
  30. Sears, E. R.: 1977. An induced mutant with homoeologous pairing in common wheat. Can. J. Genet. Cytol., 19: 585–593.CrossRefGoogle Scholar
  31. Sears, E. R. — Loegering, W.Q.: 1982. Elimination of an undesirable trait from an alien translocation line by induced homoeologous pairing. In: Singh RB, Singh RM and Singh BD, (eds), Advances in Cytogenetics and Crop Improvement, Kalyani publishers, New Delhi, pp. 81–86.Google Scholar
  32. Schubert, L. — Shi, F. — Fuchs, J. — Endo, T. R.: 1998. An efficient screening for terminal deletions and translocations of barley chromosomes added to common wheat. Plant J., 14: 489–495.CrossRefGoogle Scholar
  33. Sherman, J. D. — Smith, L. Y. — Blake, T. K. — Talbert, L. E.: 2001. Identification of barley genome segments introgressed into wheat using PCR markers. Genome, 44: 38–44.CrossRefGoogle Scholar
  34. Taketa, S. — Awayama, T. — Ichii, M. — Sunakawa, M. — Kawahara, T. — Murai, K.: 2005. Molecular cytogenetic identification of nullisomy 5B induced homoeologous recombination between wheat chromosome 5D and barley chromosome 5H. Genome, 48: 115–124.CrossRefGoogle Scholar
  35. Zhu, B. — Choi, D. W. — Fenton, R. — Close, T.J.: 2000. Expression of the barley dehydrin multigene family and the development of freezing tolerance. Mol. Gen. Genet., 264: 145–53.CrossRefGoogle Scholar
  36. Zitzewitz, J. — Szucs, P. — Dubcovsky, J. — Yan, L. — Francia, E. — Pecchioni, N. — Casas, A. — Chen, T. H. — Hayes, P. M. — Skinner, J. S.: 2005. Molecular and structural characterization of barley vernalization genes. Plant. Mol. Biol., 59(3):449–67.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2006

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Sepsi
    • 1
    Email author
  • K. Németh
    • 2
  • I. Molnár
    • 1
  • É. Szakács
    • 1
  • M. Molnár-Láng
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Georgikon Faculty of AgricultureUniversity of VeszprémKeszthelyHungary

Personalised recommendations