Advertisement

Cereal Research Communications

, Volume 33, Issue 4, pp 673–680 | Cite as

Demonstration of Aegilops biuncialis chromosomes in a wheat background by genomic in situ hybridization (GISH) and identification of U chromosomes by FISH using GAA sequences

  • István MolnárEmail author
  • Annamária Schneider
  • Márta Molnár-Láng
Article

Abstract

The aims of the study were the optimisation of genomic in situ hybridization (GISH) and the use of a GAA satellite sequences as a fluorescence in situ hybridization (FISH) probe to discriminate Aegilops biuncialis and wheat chromosomes. The application of genomic DNA from the diploid progenitors, Ae. umbellulata and Ae. comosa, as a probe with a blocking ratio of 1:200 resulted in the clear visualization of Ae. biuncialis chromosomes. Based on the strong hybridization signals of the PCR-amplified GAA satellite sequences it was possible to identify chromosomes 1U, 2U, 4U and 5U of Ac. umbellulata. The improved GISH and GAA idiogram presented here allow the Ae. biuncialis chromatin to be traced in more detail during chromosome-mediated gene transfer to wheat.

Key words

Aegilops biuncialis Aegilops umbellulata GISH FISH GAA banding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aghaee-Sarbarzeh, M. Ferrahi, M., Singh, S., Friebe, B., Gill, B. S. and Dhaliwal, H. S. (2002) Ph1-induced transfer of leaf and stripe rust-resistance genes from Aegilops triuncialis and Ae. geniculota to bread wheat. Euphytica, 127, 377–382.CrossRefGoogle Scholar
  2. Badaeva, E. D., Friebe, B. and Gill, B. S. (1996) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome, 39, 293–306.CrossRefGoogle Scholar
  3. Benavente, E., Alix, K., Dusautoir, J.-C., Orellana, J. and David, J. L. (2001) Early evolution of the chromosomal structure of Triticum turgidum-Aegilops ovata amphiploids carrying and lacking the Ph1 gene. Theoretical and Applied Genetics, 103, 1123–1128.CrossRefGoogle Scholar
  4. Friebe, B., Jiang, J., Tuleen, N. and Gill, B. S. (1995) Standard karyotype of Triticum umbellulatum and the characterization of derived chromosome addition and translocation lines in common wheat. Theoretical and Applied Genetics, 90, 150–156.CrossRefGoogle Scholar
  5. Gill, B. S. (1987) Chromosome banding methods, standard chromosome band nomenclature, and applications in cytogenetic analysis. In Wheat and Wheat Improvement. Edited by Heyne, E. G. American Society of Agronomy, Madison, Wis. pp. 243–254.Google Scholar
  6. Heslop-Harrison, J. S., Leitch, A. R., Schwarzacher, T. and Anamthawat-Jónsson, K. (1990) Detection and characterization of 1B/1R translocations in hexaploid wheat. Heredity, 65, 385–392.CrossRefGoogle Scholar
  7. Jiang, J., Friebe, B. R. and Gill, B. S. (1994) Chromosome painting of Amigo wheat. Theoretical and Applied Genetics, 89, 811–813.CrossRefGoogle Scholar
  8. Le, H. T., Armstrong, K. C. and Miki, B. (1989) Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant. Mol. Biol. Rep. 7, 150–158.CrossRefGoogle Scholar
  9. Linc, G., Friebe, B. R., Kynast, R. G., Molnár-Láng, M., Kőszegi, B., Sutka, J. and Gill, B. S. (1999) Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome, 42, 491–503.CrossRefGoogle Scholar
  10. Logojan, A. A. and Molnár-Láng, M. (2000) Production of Triticum aestivum — Aegilops biuncialis chromosome additions. Cereal Research Communications, 28, 221–228.Google Scholar
  11. McIntyre, C. L., Pereira, S., Moran, L. B. and Appels, R. (1990) New Secale cereale (rye) DNA derivates for the detection of rye chromosome segments in wheat. Genome, 33, 635–640.CrossRefGoogle Scholar
  12. Molnár, I., Gáspár, L., Sárvári, E., Dulai, S., Hoffmann, B., Molnár-Láng, M. and Galiba, G. (2004) Physiological and morphological responses to water stress in Aegilops biuncialis and Triticum aestivum genotypes with differing tolerance to drought. Functional Plant Biology, 31, 1149–1159.CrossRefGoogle Scholar
  13. Molnár-Láng, M., Linc, G., Friebe, B. R. and Sutka, J. (2000) Detection of wheat-barley translocations by genomic in situ hybridization in derivatives of hybrids multiplied in vitro. Euphytica, 112, 117–123.CrossRefGoogle Scholar
  14. Mukai, Y. and Gill, B. S. (1991) Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 34, 448–452.CrossRefGoogle Scholar
  15. Mukai, Y., Nakahara, Y. and Yamamoto, M. (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 36, 489–494.CrossRefGoogle Scholar
  16. Pedersen, C., Rasmussen, S. K. and Linde-Laursen, I. (1996) Genome and chromosome identification in cultivated barley and related species of the Triticeae (Poaceae) by in situ hybridization with the GAA-satellite sequence. Genome, 39, 93–104.CrossRefGoogle Scholar
  17. Pedersen, C. and Langridge, P. (1997) Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome, 40, 589–593.CrossRefGoogle Scholar
  18. Rayburn, A. L. and Gill, B. S. (1986) Isolation of a D genome specific repeated DNA sequence from Aegilops squarrosa. Plant Molecular Biology Rep, 4, 102–109.CrossRefGoogle Scholar
  19. Schneider A., Line, G, Molnár, I. and Molnár-Láng, M. (2004) Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of five derived wheal/Aegilops biuncialis disomic addition lines. Submitted to GenomeGoogle Scholar
  20. Schwarzacher, T., Leitch, A. R., Bennett, M. D. and Heslop-Harrison, J. S. (1989) In situ localization of parental genomes in a wild hybrid. Annals of Botany, 64, 315–324.CrossRefGoogle Scholar
  21. Vrána, J., Kubaláková, M., Simková, H., Cíhahícová, J., Lysák, M. A. and Dolezel, J. (2000) Flow sorting of mitotic chromosomes in common wheat (Triticum aestivum L.). Genetics, 156, 2033–2041.PubMedPubMedCentralGoogle Scholar
  22. Wang, Z. N., Hang, A., Hansen, J., Burton, C., Mallory-Smith, C. A. and Zemetra, R. S. (2000) Visualization of A- and B-genome chromosomes in wheat (Triticum aestivum L.) × jointed goatgrass (Aegilops cylindrica Host) backcross progenies. Genome, 43, 1038–1044.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2005

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • István Molnár
    • 1
    Email author
  • Annamária Schneider
    • 1
  • Márta Molnár-Láng
    • 1
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary

Personalised recommendations