Cereal Research Communications

, Volume 43, Issue 2, pp 295–306 | Cite as

Physical Properties and Chemical Characterization of Macro- and Micro-Nutriments of Elite Blue Maize Hybrids (Zea mays L.)

  • D. A. Urias-Lugo
  • J. B. HerediaEmail author
  • J. B. Valdez-Torres
  • M. D. Muy-Rangel
  • S. O. Serna-Saldivar
  • S. García-Lara
Quality and Utilization


Five elite blue maize hybrids and two blue maize landraces were evaluated for various quality characteristics. Hybrids showed physical characteristics demanded by dry-millers and tortilla processors: above 290 g in one hundred-kernel weight test, higher test weight (76.1–78.5 kg hl−1) and lower flotation index (22–61%). Hybrid maize 613 × 27 (9.9%) and 611 × 8 (9.5%) contained the highest protein. Potassium, magnesium, manganese and zinc contents of hybrid maize were higher than landraces by 15, 30, 55 and 41%, respectively. Nutrimental profile showed linoleic acid contents above 50% in 503 × 67, 613 × 27 and 611 × 8 hybrid samples. Lysine levels of landraces and hybrids 503 × 67 (33.9 g kg−1 protein) and 631 × 27 (31.7 g kg−1 protein) were higher than reported for regular white corn (27 g kg−1 protein), as well as the highest tryptophan levels for Chalqueno (6.0 g kg−1 protein) and hybrid 503 × 67 (6.9 g kg−1 protein). Highest protein quality based on its digestibility was found in hybrid 503 × 67. Results indicated that elite blue maize hybrids could be an important source of nutrimental compounds with potential for functional food industries.


blue maize hybrid maize landraces nutriments 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. AACC 2000. Approved Methods of the AACC (10th ed; 55–10 method). American Association of Cereal Chemists. St. Paul, Minnesota, USA.Google Scholar
  2. Adom, K.F., Liu, R.H. 2002. Antioxidant activity of grains. J. Agric. Food Chem. 50:6182–6187.CrossRefGoogle Scholar
  3. AOAC 1998. Official Methods of Analysis (16th ed; 988.05, 920.39, 942.05, 955.06, 955.09 methods). Association of Official Analytical Chemist. Arlington, VA, USA.Google Scholar
  4. AOAC 2000. Official Methods of Analysis (17th ed; 963.22 method). Association of Official Analytical Chemist. Arlington, VA, USA.Google Scholar
  5. Beltran, F.J., Bockholt, A.J., Hallauer, A.R. 2001. Blue corn. In: Rooney, L.W. (ed.), Specialty Corns. CRC Press LLC., Forida, USA, pp. 293–301.Google Scholar
  6. Bódi, Z., Pepo, P., Kovács, A., Széles, É., Gyori, Z. 2008. Macro-and microelement contents of blue and red kernel corns. Cereal Res. Commun. 36:147–155.CrossRefGoogle Scholar
  7. Castañeda-Ovando, A., Pacheco-Hernández, M.L., Páez-Hernández, M.E., Rodríguez, J.A., Galán-Vidal, C.A. 2009. Chemical studies of anthocyanins: A review. Food Chem. 113:859–871.CrossRefGoogle Scholar
  8. Emam, A., Stroshine, R., Tuite, J., Cantone, F., Kirleis, A., Bauman, L., Okos, M. 1981. Evaluating drying rate and grain quality parameters of corn inbreds/hybrids: methodology. Paper 81–3522. Am. Soc. Agric. Eng. St. Joseph, MI, USA, 31 pp. Scholar
  9. FAO/WHO/ONU 1985. Energy and Protein Requirements Report of the Joint FAO/WHO/ONU Expert Consultation. Food and Agricultural Organization of the United Nations, World Health Organization and United Nations Organization. WHO Technical Report Series, 724. Geneva, Switzerland.Google Scholar
  10. FAOSTAT 2013. Food and Agricultural Commodities Production. Food and Agricultural Organization of the United Nations Statistics.
  11. FDA 2013. Guidance for Industry: A Food Labeling Guide (14. Appendix F: Calculate the percent daily value for the appropriate nutrients). U. S. Food and Drug Administration.
  12. Feng, P., Li, T.L., Guan, Z.X., Franklin, R.B., Costello, L.C. 2002. Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate 52:311–318.CrossRefGoogle Scholar
  13. Folch, J., Lees, M., Sloane-Stanley, G.H. 1957. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497–509.PubMedGoogle Scholar
  14. Galicia, L., Nurit, E., Rosales, A., Palacios-Rojas, N. 2009. Laboratory protocols 2008: Maize nutrition quality and plant tissue analysis laboratory. International Maize and Wheat Improvement Center (CIMMYT) Press, Mexico, 42 pp.Google Scholar
  15. García-Lara, S., Gutiérrez-Uribe, J.A., Serna-Saldivar, S.O. 2012. Nutraceutical properties of blue maize. In: Jimenez-Lopez, J.C. (ed.), Maize: Cultivation, uses and health benefits. Nova Science Publishers, New York, USA, pp. 113–135.Google Scholar
  16. Harrigan, G.G., Stork, L.G., Riordan, S.G., Reynolds, T.L. 2007. Impact of genetics and environment on nutritional and metabolite components of maize grain. J. Agric. Food Chem. 55:6177–6185.CrossRefGoogle Scholar
  17. Jha, S.N. 2010. Colour measurement and modelling. In: Jha, S.N. (ed.), Non-destructive Evaluation of Food Quality. Springer Press. Heidelberg, Germany, pp. 17–40.CrossRefGoogle Scholar
  18. Lago, C., Cassani, E., Zanzi, C., Landoni, M., Trovato, R., Pilu, R. 2014. Development and study of a maize cultivar rich in anthocyanins: Coloured polenta, a new functional food. Plant Breed. 133:210–217.CrossRefGoogle Scholar
  19. Lago, C., Landoni, M., Cassani, E., Doria, E., Nielsen, E., Pilu, R. 2013. Study and characterization of a novel functional food: Purple popcorn. Mol. Breed. 31:575–585.CrossRefGoogle Scholar
  20. Pandey, M., Verma, R.K., Saraf, S.A. 2010. Nutraceuticals: New era of medicine and health. Asian J. Pharm. Clin. Res. 3:11–15.Google Scholar
  21. Preciado-Ortiz, E.R., García-Lara, S., Ortiz-Islas, S., Ortega-Corona, A., Serna-Saldivar, S.O. 2013. Response of recurrent selection on yield, kernel oil content and fatty acid composition of subtropical maize populations. Field Crops Res. 142:27–35.CrossRefGoogle Scholar
  22. Serna-Saldivar, S.O. 2010. Cereal Grains. CRC Press, Florida, USA, 747 pp.Google Scholar
  23. Serna-Saldivar, S.O., Abril, R. 2011. Production and nutraceutical properties of breads fortified with DHA and omega-3 containing oils. In: Preedy, V., Watson, R., Patel, V. (eds), Flour and Breads and their Fortification in Health and Disease Prevention. Academic Press, New York, USA, pp. 313–323.CrossRefGoogle Scholar
  24. Serna-Saldivar, S.O., Knabe, D.A., Rooney, L.W., Tanksley, T.D., Sproule, A. 1988. Nutritional value of sorghum and maize tortillas. J. Cereal Sci. 7:83–94.CrossRefGoogle Scholar
  25. Shankar, A.H., Prasad, A.S. 1998. Zinc and immune funtion: the biological basis of altered resistance to infection. Am. J. Clin. Nutr. 68 (suppl):447–463.CrossRefGoogle Scholar
  26. Sproule, A.M., Serna-Saldivar, S.O., Bockholt, A., Rooney, L.W., Knabe, D.A. 1988. Nutritional evaluation of tortillas and tortilla chips from quality protein maize. Cereal Foods World 33:233–236.Google Scholar
  27. Taiz, L., Zeiger, E. 2010. Secondary metabolites and plant defense. In: Taiz, L., Zeiger, E. (eds), Plant Physiology. Sinauer Assoc. Press, Los Angeles, USA, pp. 369–396.Google Scholar
  28. Urias-Peraldí, M., Gutiérrez-Uribe, J.A., Preciado-Ortiz, R.E., Cruz-Morales, A.S., Serna-Saldívar, S.O., García-Lara, S. 2013. Nutraceutical profiles of improved blue maize (Zea mays) hybrids for subtropical regions. Field Crops Res. 141:69–76.CrossRefGoogle Scholar
  29. USDA 2013. USDA National nutrient data base for standard reference. United States Department of Agriculture.
  30. Vazquez-Ortiz, F.A., Caire, G., Higuera-Ciapara, I., Hernández, G. 1995. High performance liquid chromatography determination of free amino acids in shrimp. J. Liq. Chromatogr. 18:2059–2068.CrossRefGoogle Scholar
  31. Wichser, W.R. 1961. The world of corn processing. Am. Miller Process. 89:29–31.Google Scholar
  32. Zilih, S., Serpen, A., Akélléoçlu, G., Gökmen, V., Vancetovih, J. 2012. Phenolic compounds, carotenoids, anthocyanins, and antioxidant capacity of colored maize (Zea mays L.) kernels. J. Agric. Food Chem. 60:1224–1231.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • D. A. Urias-Lugo
    • 1
  • J. B. Heredia
    • 1
    Email author
  • J. B. Valdez-Torres
    • 1
  • M. D. Muy-Rangel
    • 1
  • S. O. Serna-Saldivar
    • 2
  • S. García-Lara
    • 2
  1. 1.Ciencia y Tecnología de AlimentosCentro de Investigación en Alimentación y DesarrolloCuliacánMéxico
  2. 2.Escuela de Biotecnología y AlimentosCentro de Biotecnología FEMSA. Tecnológico de MonterreyNuevoMéxico

Personalised recommendations