Advertisement

Cereal Research Communications

, Volume 43, Issue 2, pp 179–188 | Cite as

Cytological, Phenological and Molecular Characterization of B (S)-Genome Synthetic Hexaploids (2n = 6x = 42; AABBSS)

  • A. Gul KaziEmail author
  • A. Rasheed
  • H. Bux
  • A. A. Napar
  • A. Ali
  • A. Mujeeb-Kazi
Genetics

Abstract

The B(S) genome diploids (2n = 2x = 14) are a unique reservoir of genetic diversity that can provide wheat breeders a rich source of allelic variation for stress traits that limit productivity. Restricted in practical use essentially due to their complex chromosomal behavior, these diploids have been in limited practical usage. The classic utilization example has been the suppression activity of the Ph locus and role in alien genetic transfer aspects that has been a standard in cytogenetic manipulation studies. For applied efforts focusing on Aegilops speltoides researchers in CIMMYT initiated an ambitious program to make AABBBB(SS) synthetics and made progress by generating over 50 such synthetics. Of these 20 were available for this study in which phenology and powdery mildew screening were evaluated. Four of these 20 synthetics appeared to be useful sources for further exploitation in breeding. These were entries 6, 9, 10 and 11 suited for exploitation in pre-breeding, with positive phenological characters particularly high thousand-kernel weight and are cytologically near euploid at 2n = 6x = 42. The subtle hyper (43) and hypoploid number would not negate their applied use potential. Preference however goes to genotypes 9 and 11.

Keywords

Triticum aestivum phenology cytology fingerprinting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2015_4302179_MOESM1_ESM.pdf (157 kb)
Supplementary material, approximately 150 KB.

References

  1. Alonso, L.C., Kimber, G. 1984. The analysis of meiosis in hybrids. Can. J. Genet. Cytol. 23:221–234.CrossRefGoogle Scholar
  2. Brocklehurst, P.A. 1977. Factors controlling grain weight in wheat. Nature 266:348–349.CrossRefGoogle Scholar
  3. Calderini, D.F., Ortiz-Monasterio, I. 2003. Crop physiology and metabolism: Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop Sci. 43:141–151.CrossRefGoogle Scholar
  4. Campbell, K.J., Bergman, C.J., Gualberto, D.G., Anderson, J.A., Giroux, M.J., Hareland, G., Fulcher, R.G., Sorrells, M.E., Finney, P.L. 1999. Quantitative trait loci associated with kernel traits in a soft × hard wheat cross. Crop Sci. 39:1184–1195.CrossRefGoogle Scholar
  5. Chen, P.D., Tsujimoto, H., Gill, B.S. 1994. Transfer of PhI gene promoting homoeologous pairing from Aegilops speltoides into common wheat and their utilization in alien genetic introgression. Theor. Appl. Genet. 88:97–101.CrossRefGoogle Scholar
  6. Dreccer, F.M., Borgognone, G.M., Ogbonnaya, F.C., Trethowan, R.M., Winter, B. 2007. CIMMYT-selected derived synthetic bread wheats for rainfed environments: yield evaluation in Mexico and Australia. Field Crops Res. 100:218–228.CrossRefGoogle Scholar
  7. Dweikat, I., Ohm, H., Mackenzie, S., Patterson, F., Cambron, S., Ratcliffe, R. 1994. Association of a DNA marker with Hessian fly resistance gene H9 in wheat. Theor. Appl. Genet. 89:964–968.CrossRefGoogle Scholar
  8. Faris, J.D., Xu, S.S., Cai, X., Friesen, T.L., Jin, Y. 2008. Molecular and cytogenetic characterization of a durum wheat-Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res. 16:1097–1105.CrossRefGoogle Scholar
  9. Gill, B.S., Raupp, W.J. 1987. Direct genetic transfer from Aegilops squarrosa L. to hexaploid wheat. Crop Sci. 27:445–450.CrossRefGoogle Scholar
  10. Kihara, H. 1944. Discovery of the DD-analyser, one of the ancestors of vulgare wheats. Agric. Hortic. 19:889–890.Google Scholar
  11. Mago, R., Zhang, P., Bariana, H.S., Verlin, D.C., Bansal, U.K.et al. 2009. Development of wheat lines carrying stem rust resistance gene Sr39 with reduced Aegilops speltoides chromatin and simple PCR markers for marker-assisted selection. Theor. Appl. Genet. 119:1441–1450.CrossRefGoogle Scholar
  12. McFadden, E.S., Sears, E.R. 1946. The origin of Triticum spelta and its free-threshing relatives. J. Hered. 37:107–116.CrossRefGoogle Scholar
  13. Metakovsky, E.V., Novoselskaya, A.Y., Kopus, M.M., Sobko, T.A., Sozinov, A.A. 1984. Blocks of gliadin components in winter wheat detected by one-dimensional polyacrylamide gel electrophoresis. Theor. Appl. Genet. 67:559–568.CrossRefGoogle Scholar
  14. Mujeeb-Kazi, A. 2006. Utilization of Genetic Resources for Bread Wheat Improvement. In: Singh, R.J., Jauhar, P.P. (eds), Genetic Resources, Chromosome Engineering, and Crop Improvement: Cereals. Vol. 2. CRC Press, New York, USA, pp. 61–97.CrossRefGoogle Scholar
  15. Mujeeb-Kazi, A., Asiedu, R. 1995. The potential of wide hybridization in wheat improvement. Ann. Biol. 11:1–15.Google Scholar
  16. Mujeeb-Kazi, A., Hettel, G.P. (eds). 1995. Utilizing Wild Grass Biodiversity in Wheat Improvement: 15 years of Wild Cross Research at CIMMYT. CIMMYT Research Report No. 2. Mexico, D.F., Mexico.Google Scholar
  17. Mujeeb-Kazi, A., Rosas, V., Roldan, S. 1996. Conservation of genetic variation of Triticum tauschii (Coss.) Schmalh (Aegilops squarossa auct. Non L.) in synthetic hexaploid wheats (T. turgidum L. s. lat. × T. tauschii; 2n = 6x = 42; AABBDD) and its potential utilization for wheat improvement. Genet Resour. Crop Evol. 43:129–134.CrossRefGoogle Scholar
  18. Nei, M., Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl Acad. Sci. 76:5269–5273.CrossRefGoogle Scholar
  19. Ogbonnaya, F., Mujeeb-Kazi, A., Kazi, A.G., Lagudah, E.L., Xu, S.S., Bonnett, D. 2013. Synthetic hexaploid in wheat improvement. In: Janick, J. (ed.), Plant Breeding Reviews. Vol. 37. First edition. John Wiley & Sons Inc., New York, USA, ISSN: 0730-2207, pp. 35–122.CrossRefGoogle Scholar
  20. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  21. Röder, M.S., Huang, X.Q., Börner, A. 2008. Fine mapping of the region on wheat chromosome 7D controlling grain weight. Funct. Integr. Genomics 8:79–86.CrossRefGoogle Scholar
  22. Rohlf, E.J. 1993. NTSYS-pc: Numerical taxonomy and multivariate analysis system, version 1.80. Applied Biostatistics Inc., Setauket, New York, USA.Google Scholar
  23. Sneath, P.H.A., Sokal, R.R. 1973. Numerical Taxonomy. W.H. Freeman and Company. San Francisco, USA, pp. 230–234.Google Scholar
  24. Trethowan, R.M., Mujeeb-Kazi, A. 2008. The use of novel germplasm resources to improve the environmental stress tolerance of hexaploid wheat. Crop Sci. 48:1255–1265.CrossRefGoogle Scholar
  25. Weining, B., Langridge, P. 1991. Identification and mapping polymorphism in cereals based on PCR. Theor. Appl. Genet. 82:209–216.CrossRefGoogle Scholar
  26. Zhixia, N., Klindword, D.L., Friesen, T.L., Chao, S., Jin, Y., Cai, X., Xu, S.S. 2011. Targeted introgression of a wheat stem rust resistance gene by DNAmarker-assisted chromosome engineering. Genetics 187:1011–1021.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Gul Kazi
    • 1
    Email author
  • A. Rasheed
    • 2
  • H. Bux
    • 3
  • A. A. Napar
    • 2
  • A. Ali
    • 4
  • A. Mujeeb-Kazi
    • 5
  1. 1.Atta-ur-Rahman School of Applied BiosciencesNational University of Sciences and TechnologyIslamabadPakistan
  2. 2.Crop Science Research Institute/National Wheat Improvement CentreChinese Academy of Agricultural Sciences (CAAS)BeijingPR China
  3. 3.Institute of Plant SciencesUniversity of SindhJamshoroPakistan
  4. 4.Center for Plant Sciences and BiodiversityUniversity of SwatSwatPakistan
  5. 5.International Wheat and Maize Improvement Center (CIMMYT)MexicoMexico

Personalised recommendations