Association Mapping Identifies QTLS on Wheat Chromosome 3A for Yield Related Traits
Abstract
A panel of 94 diverse hexaploid wheat accessions was used to map quantitative trait loci (QTL) underlying the yield related traits on chromosome 3A. Population structure and kinships were estimated using unlinked SSR markers from all 21 chromosomes. Analysis of variance revealed significant difference among accessions; however, genotype × year interaction was non-significant for majority of yield related traits. A mixed linear model (MLM) approach identified six QTLs for four traits that individually accounted for 10.7 to 17.3% phenotypic variability. All QTLs were consistently observed for both study years. New putative QTLs for the maximum fertile florets per spike and spike length were identified. This report on QTLs for yield related traits on chromosome 3A will extend the existing knowledge and may prove useful in marker-assisted selection (MAS) for development of high yielding cultivars.
Keywords
wheat grain yield population structure linkage disequilibrium association mappingPreview
Unable to display preview. Download preview PDF.
References
- Abdurakhmonov, A.Y., Abdukarimov, A. 2008. Application of association mapping to understanding the genetic diversity of plant germplasm resources. Int. J. Plant. Genom. 2008: 574927.Google Scholar
- Ali, M.L., Baenziger, P.S., Ajlouni, Z.A., Campbell, B.T., Gill, K.S., Eskridge, K.M., Mujeeb-Kazi, A., Dweikat, I. 2011. Mapping QTL for agronomic traits on wheat chromosome 3A and a comparision of recombinant inbred chromosome line populations. Crop Sci. 51: 553–566.CrossRefGoogle Scholar
- Al-Maskri, A.H., Sajjad, M., Khan, S.H. 2012. Association mapping: A step forward to discovering new alleles for crop improvement. Int. J. Agric. Biol. 14: 153–160.Google Scholar
- Anderson, J.R., Zein, I., Wenzel, G., Krützfeldt, B., Eder, J., Ouzunova, M., Lübberstedt, T. 2007. High levels of linkage disequilibrium and associations with forage quality at a Phenylalanine Ammonia-Lyase locus in European maize (Zea mays L.) inbreds. Theor. Appl. Genet. 114: 307–319.CrossRefGoogle Scholar
- Breseghello, F., Sorrells, M.E. 2006. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172: 1165–1177.CrossRefGoogle Scholar
- Crossa, J., Burgueno, J., Dreisickacker, S., Vargas, M., Herrera-Foessel, S.A., Lillemo, M., Singh, R.P., Trethowan, R., Warburton, M., Franco, J., Reynolds, M., Crouch, J.H., Ortiz, R. 2007. Association analysis of historical bread wheat germplasm using additive genetic covariance of relatives and population structure. Genetics 177: 1889–1913.CrossRefGoogle Scholar
- DeWan, A., Liu, M., Hartman, S., Zhang, S.S., Liu, D.T.L., Zhao, C., Tam, P.O.S., Chan, W.M., Lam, D.S.C., Snyder, M., Barnstable, C., Pang, C.P., Hoh, J. 2006. HTRA1 promoter polymorphism in wet age-related macular degeneration. Science 314: 989–992.CrossRefGoogle Scholar
- Gupta, P.K., Rustgi, S., Kulwal, P.L. 2005. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant. Mol. Biol. 57: 461–485.CrossRefGoogle Scholar
- Gurung, S., Mamidi, S., Bonman, J.M., Jackson, E.W., del Rýo, L.E., Acevedo, M., Mergoum, M., Adhikari, T.B. 2011. Identification of novel genomic regions associated with resistance to Pyrenophora tritici-repentis races 1 and 5 in spring wheat landraces using association analysis. Theor. Appl. Genet. 123: 1029–1041.CrossRefGoogle Scholar
- Huang, X.Q., Borner, A., Roder, M.S., Ganal, M.W. 2002. Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor. Appl. Genet. 105: 699–707.CrossRefGoogle Scholar
- Karlsson, E.K., Baranowska, I., Wade, C.M., Hillbertz, N.H.C.S., Zody, M.C., Anderson, N., Biagi, T.M., Patterson, N., Pielberg, G.R., Kulbokas, E.J.I., Comstock, K.E., Keller, E.T., Mesirov, J.P., Euler, H., Kämpe, O., Hedhammar, A., Lander, E.S., Andersson, G., Andersson, L., Lindblad-Toh, K. 2007. Efficient mapping of Mendelian traits in dogs through genome-wide association. Nat. Genet. 39: 1321–1328.CrossRefGoogle Scholar
- Liu, L., Wang, L., Yao, J., Zheng, Y., Zhao, C. 2010. Association mapping of six agronomic traits on chromosome 4A of wheat (Triticum aestivum L.). Mol. Plant Breed. 1: 1–10.Google Scholar
- Mengistu, N., Baenziger, P.S., Eskridge, K.M., Dweikat, I., Wegulo, S.N., Gill, K.S., Mujeeb-Kazi, A. 2012. Validation of QTL for grain yield-related traits on wheat chromosome 3A using recombinant inbred chromosome lines. Crop Sci. 52: 1622–1632.CrossRefGoogle Scholar
- Palaisa, K.A., Morgante, M., Williams, M., Rafalski, A. 2003. Contrasting effects of selection on sequence diversity and linkage disequilibrium at two phytoene synthase loci. Plant Cell 15: 1795–1806.CrossRefGoogle Scholar
- Peng, J.H., Bai, Y., Haley, S.D., Lapitan, N.L.V. 2009. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 135: 95–122.CrossRefGoogle Scholar
- Pritchard, J.K., Stephens, M., Donnelly, P. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.PubMedPubMedCentralGoogle Scholar
- Ravel, C., Praud, S., Murigneux, A., Linossier, L., Dardevet, M., Balfourier, F., Dufour, P., Brunel, D., Charmet, G. 2006. Identification of Glu-B1-1 as a candidate gene for the quantity of high-molecular-weight glutenin in bread wheat (Triticum aestivum L.) by means of an association study. Theor. Appl. Genet. 112: 738–743.CrossRefGoogle Scholar
- Remington, D.L., Thornsberry, J.M., Matsuoka, Y., Wilson, L.M., Whitt, S.R., Doebley, J., Kresovich, S., Goodman, M.M., Buckler, E.S. IV. 2001. Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98: 11479–11484.CrossRefGoogle Scholar
- Rogowsky, P.M., Guidet, F.L.Y., Langridge, P., Shepherd, K.W., Koebner, R.D.M. 1991. Isolation and characterization of wheat-rye recombinants involving chromosome arm 1DS of wheat. Theor. Appl. Genet. 82: 537–544.CrossRefGoogle Scholar
- Roy, J.K., Bandopadhyay, R., Rustgi, S., Balyan, H.S., Gupta, P.K. 2006. Association analysis of agronomically important traits using SSR, SAMPL, and AFLP markers in bread wheat. Curr. Sci. 90: 683–689.Google Scholar
- Sajjad, M., Khan, S.H., Mujeeb-Kazi, A. 2012. The lowdown on association mapping in hexaploid wheat (Triticum aestivum L.). J. Crop Sci. Biotech. 15: 147–158.CrossRefGoogle Scholar
- Sajjad, M., Khan, S.H., Fatima, N., Rana, R.M., Shah, K.N. 2013. Family and/or friends? Gene mapping at crossroads. Amer. J. Plant. Sci. in pressGoogle Scholar
- Sanchez-Pérez, R., Ballester, J., Dicenta, F., Arús, P., Martínez-Gómez, P. 2006. Comparison of SSR polymorphisms using automated capillary sequencers, and polyacrylamide and agarose gel electrophoresis: Implications for the assessment of genetic diversity and relatedness in almond. Sci. Hort. 108: 310–316.CrossRefGoogle Scholar
- Somers, D.J., Isaac, P., Edwards, K. 2004. A high density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109: 1105–1114.CrossRefGoogle Scholar
- Stich, B., Melchinger, A.E., Frisch, M., Maurer, H.P., Heckenberger, M., Reif, J.C. 2005. Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor. Appl. Genet. 111: 723–730.CrossRefGoogle Scholar
- Tenaillon, M.I., Sawkins, M.C., Long, A.D., Gaut, R.L., Oebley, J.F.D., Gaut, B.S. 2001. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp mays L.). Proc. Natl Acad. Sci. USA 98: 9161–9166.CrossRefGoogle Scholar
- Tommasini, L., Schnurbusch, T., Fossati, D., Mascher, F., Keller, B. 2007. Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115: 697–708.CrossRefGoogle Scholar
- Yao, J., Wang L., Liu, L., Zhao, C., Zheng, Y. 2009. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica 137: 67–75.CrossRefGoogle Scholar
- Yu, J., Buckler, E.S. 2006. Genetic association mapping and genome organization of maize. Curr. Opin. Biotech. 17: 155–160.CrossRefGoogle Scholar
- Yu, J., Pressoir, G., Briggs, W.H., Bi, I.V, Yamasaki, M., Doebley, J.F., McMullen, M.D., Gaut, B.S., Nielsen, D.M., Holland, J.B., Kresovich, S., Buckler, E.S. 2006. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat. Genet. 38: 203–208.CrossRefGoogle Scholar
- Yu, L.X., Lorenz, A., Rutkoski, J., Singh, R.P., Bhavani, S., Huerta-Espino, J., Sorrells, M.E. 2011. Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor. Appl. Genet. 123: 1257–1268.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.