Cereal Research Communications

, Volume 42, Issue 1, pp 47–57 | Cite as

TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana

  • Q. Xu
  • W. J. Feng
  • H. R. Peng
  • Z. F. NiEmail author
  • Q. X. SunEmail author


Members of WRKY gene family encode transcription factors involved in plant developmental processes and response to biotic and abiotic stresses. In order to understand the function of the TaWRKY71 gene, a homologue gene was isolated and characterised in wheat (Triticum aestivum L.) genotype TAM107. Tissue-specific gene expression profiles indicated that TaWRKY71 was constitutively expressed in roots, stems, leaves, stamen and pistil. The relative expression of TaWRKY71 was elucidated under ABA treatment and other abiotic stresses. In agreement with this, several putative cis-acting elements involved in ABA-response, drought-inducibility, low-temperature and heat response were detected in the promoter region of TaWRKY71. The function of TaWRKY71 was further determined by transforming Arabidopsis thaliana. Transgenic plants over-expressing TaWRKY71 displayed enhanced seed germination under ABA treatment and were tolerant to salt and drought stresses. These results indicate that TaWRKY71 gene might play important roles in seed germination and abiotic stress response.


wheat TaWRKY71 seed germination abiotic stress 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2014_4201047_MOESM1_ESM.pdf (816 kb)
Supplementary material, approximately 835 KB.


  1. Agarwal, P., Reddy, M.P., Chikara, J. 2011. WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol. Biol. Reports 38:3883–3896.CrossRefGoogle Scholar
  2. Avonce, N., Leyman, B., Mascorro-Gallardo, J.O., Van Dijck, P., Thevelein, J.M., Iturriaga, G. 2004. The Arabidopsis trehalose-6-P synthase AtTPS1 gene is a regulator of glucose, abscisic acid, and stress signalling. Plant Physiol. 136:3649–3659.CrossRefGoogle Scholar
  3. Bewley, J.D. 1997. Seed germination and dormancy. The Plant Cell 9:1055–1066.CrossRefGoogle Scholar
  4. Brenchley, R., Spannagl, M., Pfeifer, M., Barker, G.L.A., D’Amore, R., Allen, A.M., McKenzie, N., Kramer, M., Kerhornou, A., Bolser, D., Kay, S., Waite, D., Trick, M., Bancroft, I., Gu, Y., Huo, N., Luo, M.C., Sehgal, S., Gill, B., Kianian, S., Anderson, O., Kersey, P., Dvorak, J., McCombie, W.R., Hall, A., Mayer, K.F.X., Edwards, K.J., Bevan, M.W., Hall, N. 2012. Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature doi: Scholar
  5. Cho, S.K., Kim, J.E., Park, J.A., Eom, T.J., Kim, W.T. 2006. Constitutive expression of abiotic stress-inducible hot pepper CaXTH3, which encodes a xyloglucan endotransglucosylase/hydrolase homolog, improves drought and salt tolerance in transgenic Arabidopsis plants. FEBS Letters 580:3136–3144.CrossRefGoogle Scholar
  6. Clough, S.J., Bent, A.F. 1998. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal 16:735–743.CrossRefGoogle Scholar
  7. Dai, X.Y., Xu, Y.Y., Ma, Q.B., Xu, W.Y., Wang, T., Xue, Y.B., Chong, K. 2007. Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol. 143:1739–1751.CrossRefGoogle Scholar
  8. Eulgem, T. 2006. Dissecting the WRKY web of plant defence regulators. PLoS Pathogens 2:e126.CrossRefGoogle Scholar
  9. Eulgem, T., Rushton, P.J., Robatzek, S., Somssich, I.E. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Sci. 5:199–206.CrossRefGoogle Scholar
  10. Eulgem, T., Somssich, I.E. 2007. Networks of WRKY transcription factors in defence signalling. Current Opinion in Plant Biol. 10:366–371.CrossRefGoogle Scholar
  11. Golkari, S., Gilbert, J., Prashar, S., Procunier, J.D. 2007. Microarray analysis of Fusarium graminearum-induced wheat genes: Identification of organ-specific and differentially expressed genes. Plant Biotechnol. Journal 5:38–49.CrossRefGoogle Scholar
  12. Gregersen, P.L., Holm, P.B. 2007. Transcriptome analysis of senescence in the flag leaf of wheat (Triticum aestivum L.). Plant Biotechnol. Journal 5:192–206.CrossRefGoogle Scholar
  13. Houde, M., Belcaid, M., Ouellet, F., Danyluk, J., Monroy, A.F., Dryanova, A., Gulick, P., Bergeron, A., Laroche, A., Links, M.G., MacCarthy, L., Crosby, W.L., Sarhan, F. 2006. Wheat EST resources for functional genomics of abiotic stress. BMC Genomics 7:149.CrossRefGoogle Scholar
  14. Hu, Z.R., Yu, Y., Wang, R., Yao, Y.Y., Peng, H.R., Ni, Z.F., Sun, Q.X. 2011. Expression divergence of TaMBD2 homoeologous genes encoding methyl CpG-binding domain proteins in wheat (Triticum aestivum L.). Gene 471:13–18.CrossRefGoogle Scholar
  15. Ishiguro, S., Nakamura, K. 1994. Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5’ upstream regions of genes coding for sporamin and beta-amylase from sweet potato. Molecular and General Genetics 244:563–571.CrossRefGoogle Scholar
  16. Jiang, Y., Deyholos, M.K. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol. Biol. 69:91–105.CrossRefGoogle Scholar
  17. Niu, C.F., Wei W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma, B., Lin, Q., Zhang, Z.B., Zhang, J.S., Chen, S.Y. 2012. Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell and Environ. 35:1156–1170.CrossRefGoogle Scholar
  18. Pandey, S.P., Somssich, I.E. 2009. The role of WRKY transcription factors in plant immunity. Plant Physiol. 150:1648–1655.CrossRefGoogle Scholar
  19. Qiu, Y., Yu, D. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany 65:35–47.CrossRefGoogle Scholar
  20. Ren, X.Z., Chen, Z.Z., Liu, Y., Zhang, H.R., Zhang, M., Liu, Q., Hong, X.H., Zhu, J.K., Gong, Z.Z. 2010. ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. The Plant Journal 63:417–429.CrossRefGoogle Scholar
  21. Rushton, P.J., Torres, J.T., Parniske, M., Wernert, P., Hahlbrock, K., Somssich, I.E. 1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. EMBO Journal 15:5690–5700.CrossRefGoogle Scholar
  22. Rushton, P.J., Somssich, I.E., Ringler, P., Shen, Q.J. 2010. WRKY transcription factors. Trends Plant Sci. 15:247–258.CrossRefGoogle Scholar
  23. Sridha, S., Wu, K. 2006. Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. The Plant Journal 46:124–133.CrossRefGoogle Scholar
  24. Sun, C., Palmqvist, S., Olsson, H., Boren, M., Ahlandsberg, S., Jansson, C. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signalling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15:2076–2092.CrossRefGoogle Scholar
  25. Wu, H.L., Ni, Z.F., Yao, Y.Y., Guo, G.G., Sun, Q.X. 2008. Cloning and expression profiles of 15 genes encoding WRKY transcription factor in wheat (Triticum aestivum L.). Progress in Natural Sci. 18:697–705.CrossRefGoogle Scholar
  26. Wu, X., Shiroto, Y., Kishitani, S., Ito, Y., Toriyama, K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports 28:21–30.CrossRefGoogle Scholar
  27. Xie, Z., Zhang, Z.L, Zou, X., Huang, J., Ruas, P., Thompson, D., Shen, Q.J. 2005. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signalling in aleurone cells. Plant Physiol. 137:176–189.CrossRefGoogle Scholar
  28. Xiong, L., Gong, Z., Rock, C.D., Subramanian, S., Guo, Y., Xu, W., Galbraith, D., Zhu, J.K. 2001. Modulation of abscisic acid signal transduction and biosynthesis by an Sm-like protein in Arabidopsis. Developmental Cell 1:771–781.CrossRefGoogle Scholar
  29. Zhang, Z.L., Xie, Z., Zou, X., Casaretto, J., Ho, T.H., Shen, Q.J. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signalling pathway in aleurone cells. Plant Physiol. 134:1500–1513.CrossRefGoogle Scholar
  30. Zhang, Z.L., Shin, M., Zou, X., Huang, J., Ho, T.H., Shen, Q.J. 2009. A negative regulator encoded by a rice WRKY gene represses both abscisic acid and gibberellins signalling in aleurone cells. Plant Mol. Biol. 70:139–151.CrossRefGoogle Scholar
  31. Zhang, L., Xi, D., Li S., Gao, Z., Zhao, S., Shi, J., Wu, C., Guo, X. 2011. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol. Biol. 77:17–31.CrossRefGoogle Scholar
  32. Zhou, Q.Y., Tian, A.G., Zou, H.F., Xie, Z.M., Lei, G., Huang, J., Wang, C.M., Wang, H.W., Zhang, J.S., Chen, S.Y. 2008. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol. Journal 6:486–503.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.State Key Laboratory for Agrobiotechnology, Key Laboratory of Crop Heterosis Utilization (MOE), Key Laboratory of Crop Genomics and Genetic Improvement (MOA), Beijing Key Laboratory of Crop Genetic ImprovementChina Agricultural UniversityBeijingChina
  2. 2.Cotton Research InstituteShanXi Academy of Agricultural ScienceYunChengChina

Personalised recommendations