Cereal Research Communications

, Volume 42, Issue 1, pp 102–110 | Cite as

Characterization of a Phytase (TaPAPhy_a1.1) Gene in an Indian Wheat Cultivar

  • A. Verma
  • S. Ram
  • S. Dalal


A full length phytase (TaPAPhy_a1.1) gene was cloned and sequenced from Indian wheat cultivar DBW17. The 2,060 bp sequence has four introns of 63, 90, 94, 103 bp and encodes a polypeptide of 548 amino acids. N-terminal residues 5 to 19 contain a signaling peptide (SP) targeted to the vacuole. The predicted molecular weight and isoelectric point were 60.53 kDa and 6.74, respectively. A phylogenetic tree analysis revealed that TaPAPhy_a1.1 clustered on a branch with PAPhy_a1 from Aegilops tauschii cultivar NGB 9855. A structural model of TaPAPhy_a1.1 protein showed a single chain dimer containing two metal ions (Fe and Zn) bound at its active site. It belongs to the metallophosphoesterase group containing a characteristic set of seven amino acid residues (Asp, Asp, Tyr, Asn, His, His, His) involved in metal ligation. The full length TaPAPhy_a1.1 gene sequence from this investigation can be used for allele mining studies to identify superior alleles for higher phytase levels for improving the nutritional quality of wheat.


nutritional quality purple acid phosphatase Triticum aestivum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2014_4201102_MOESM1_ESM.pdf (36 kb)
Supplementary material, approximately 37 KB.


  1. Baur, X., Melching-Koiimiss, S., Koops, F., Strasburger, K., Zober, A. 2002. IgE-mediated allergy to phytase — A new animal feed additive. Allergy 57:943–945.CrossRefGoogle Scholar
  2. Brinch-Pedersen, H., Sorensen, L.D., Holm, P.B. 2002. Engineering crop plants: Getting a handle on phosphate. Trends in Plant Sci. 7:118–125.CrossRefGoogle Scholar
  3. Dionisio, G., Holm, P.B., Brinch-Pedersen, H. 2007. Wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) multiple inositol polyphosphate phosphatases (MINPPs) are phytases expressed during grain filling and germination. J. Plant Biotechnol. 5:325–338.CrossRefGoogle Scholar
  4. Dionisio, G., Madsen, C.K., Holm, P.B., Welinder, K.G., Jørgensen, M., Stoger, E., Arcalis, E., Brinch-Pedersen, H. 2011. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. Plant Physiol. 156:1087–1100.CrossRefGoogle Scholar
  5. Greiner, R., Konietzny, U. 2006. Phytase for food application. Food Technol. and Biotechnol. 44:125–140.Google Scholar
  6. Harland, B.F., Morris, E.R. 1995. Phytate a good or a bad component? Nutri. Res. 15:733–754.CrossRefGoogle Scholar
  7. Klabunde, T., Krebs, B. 1997. The dimetal centre in purple acid phosphatases. Structure and Bonding 89:177–198.CrossRefGoogle Scholar
  8. Klabunde, T., Strater, N., Fröhlich, R., Witzel, H., Krebs, B. 1996. Mechanism of Fe(III)-Zn(II) purple acid phosphatase based on crystal structures. J. Mol. Bio. 259:737–748.CrossRefGoogle Scholar
  9. Lei, X.G., Porres, J.M., Mullaney, E.J., Brinch-Pedersen, H. 2007. Phytase: Source, structure and application. In: Polaina, J., MacCabe, A.P. (eds), Industrial Enzymes: Structure, Function and Applications. Springer, Dordrecht, The Netherlands, pp. 505–530.CrossRefGoogle Scholar
  10. Maugenest, S., Martinez, I., Godin, B., Perez, P., Lescure, A.M. 1999. Structure of two maize phytase genes and their spatio-temporal expression during seedling development. Plant Mol. Bio. 39:503–514.CrossRefGoogle Scholar
  11. Puhl, A.A., Gruninger, R.J., Greiner, R., Janzen, T.W., Mosimann, S.C., Selinger, L.B. 2007. Kinetic and structural analysis of a bacterial protein tyrosine phosphatase-like myo-inositol polyphosphatase. Protein Sci. 16:1368–1378.CrossRefGoogle Scholar
  12. Ram, S., Verma, A., Sharma, S. 2010. Large variability exists in phytase levels among Indian wheat varieties and synthetic hexaploids. J. Cereal Sci. 52:486–490.CrossRefGoogle Scholar
  13. Sandberg, A.S., Andersson, H. 1998. Effect of dietary phytase on the digestion of phytate in the stomach and small intestine of humans. J. Nutr. 118:469–473.CrossRefGoogle Scholar
  14. Sun, F., Suen, P.K., Zhang, Y., Liang, C., Carrie, C., Whelan, J., Ward, J.L., Hawkins, N.D., Jiang, L., Lim, B.L. 2012. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield. New Phytol. 194:206–219.CrossRefGoogle Scholar
  15. Vogel, A., Spener, F., Krebs, B. 2006. Purple acid phosphatases. In: Messerschmidt, A., Huber, R., Poulas, T., Wieghardt, K., Cygel, M., Bode, M. (eds), Handbook of Metalloproteins. John Wiley & Sons, New Jersey, USA. pp. 752–767.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Verma
    • 1
  • S. Ram
    • 1
  • S. Dalal
    • 2
  1. 1.Directorate of Wheat ResearchKarnalIndia
  2. 2.Department of BiotechnologyKurukshetra UniversityKurukshetraIndia

Personalised recommendations