Advertisement

Cereal Research Communications

, Volume 41, Issue 4, pp 519–526 | Cite as

Cold Stress Response of Wheat Genotypes Having Different Rc Alleles

  • E. I. Gordeeva
  • O. Y. Shoeva
  • E. K. KhlestkinaEmail author
Physiology

Abstract

Nine wheat genotypes differing by Rc (red coleoptile) alleles were investigated for the dynamics of seedling growth and relative anthocyanin content in the coleoptiles in response to cold. The stressed genotypes showed either reduced, similar or increased anthocyanin content compared to unstressed plants. This difference can be partially explained by the allelic state of the Rc genes. In ‘Saratovskaya 29’ weak Rc allele causes low anthocyanin content under optimal growth conditions. Upon cold treatment the level of anthocyanins decreased, whereas it increased in two near isogenic lines (NILs) with strong Rc alleles developed on ‘Saratovskaya 29’, and in some other genotypes having high anthocyanin content under optimal growth conditions. The changes in anthocyanin content correlated negatively with the changes of growth parameters in response to cold stress, suggesting the presence of some stress-dependent regulation of anthocyanin biosynthesis in wheat coleoptiles.

Keywords

Triticum wheat red coleoptile anthocyanin genetic variability cold stress response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bandy, B., Bechara, E.J.H. 2001. Bioflavonoid rescue of ascorbate at a membrane interface. J. Bioenerg. Biomem. 33:269–277.CrossRefGoogle Scholar
  2. Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70:1–9.CrossRefGoogle Scholar
  3. Christie, P.J., Alfenito, M.R., Walbot, V. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549.CrossRefGoogle Scholar
  4. Deal, D.L., Raulston, J.C., Hinesley, L.E. 1990. Leaf color retention, dark respiration, and growth of red-leafed Japanese maples under high night temperatures. J. Amer. Soc. Hortic. Sci. 115:135–140.CrossRefGoogle Scholar
  5. Derera, N.F., Bhatt, G.M., McMaster, G.J. 1977. On the problem of pre-harvest sprouting of wheat. Euphytica 26:299–308.CrossRefGoogle Scholar
  6. Dietrichson, J. 1970. Geographic variation in Pinus contorta: A study with a view to the use of this species in Norway. Med. Norske Skogforsoksvesen 28:111–140.Google Scholar
  7. Erlejman, A.G., Verstraeten, S.V., Fraga, C.G., Oteiza, P.I. 2004. The interaction of flavonoids with membranes: Potential determinant of flavonoid antioxidant effects. Free Radical Res. 38:1311–1320.CrossRefGoogle Scholar
  8. Freed, R.D., Everson, E.H., Ringlund, K., Gullord, M. 1976. Seed coat color in wheat and the relationship to seed dormancy at maturity. Cereal Res. Commun. 4:147–149.Google Scholar
  9. Gale, M.D., Flavell, R.B. 1971. The genetic control of anthocyanin biosythesis by homoeologous chromosomes in wheat. Genet. Res. Camb. 18:237–244.CrossRefGoogle Scholar
  10. Gould, K.S., Markham, K.R., Smith, R.H., Goris, J.J. 2000. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J. Exp. Bot. 51:1107–1115.CrossRefGoogle Scholar
  11. Howe, G.T., Hackett, W.P., Furnier, G.R., Klevorn, R.E. 1995. Photoperiodic responses of a northern and southern ecotype of black cottonwood. Physiol. Plant. 93:695–708.CrossRefGoogle Scholar
  12. Khlestkina, E.K. 2013. The adaptive role of flavonoids: Emphasis on cereals. Cereal Res. Commun. In Press.Google Scholar
  13. Khlestkina, E.K., Pestsova, E.G., Röder, M.S., Börner, A. 2002. Molecular mapping, phenotypic expression and geographical distribution of genes determining anthocyanin pigmentation of coleoptiles in wheat (Triticum aestivum L.). Theor. Appl. Genet. 104:632–637.CrossRefGoogle Scholar
  14. Khlestkina, E.K., Pshenichnikova, T.A., Röder, M.S., Börner, A. 2009. Clustering anthocyanin pigmentation genes in wheat group 7 chromosomes. Cereal Res. Commun. 37:391–398.CrossRefGoogle Scholar
  15. Khlestkina, E.K., Röder, M.S., Pshenichnikova, T.A., Börner, A. 2010. Functional diversity at Rc (red coleoptile) locus in wheat (Triticum aestivum L.). Mol. Breed. 25:125–132.CrossRefGoogle Scholar
  16. Khlestkina, E.K., Röder, M.S., Salina, E.A. 2008. Relationship between homoeologous regulatory and structural genes in allopolyploid genome — A case study in bread wheat. BMC Plant Biol. 8:88.CrossRefGoogle Scholar
  17. Kytridis, V.-P., Manetas, Y. 2006. Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: evidence linking the putative antioxidant role to the proximity of oxy-radical source. J. Exp. Bot. 57:2203–2210.CrossRefGoogle Scholar
  18. Neill, S.O., Gould, K.S. 2003. Anthocyanins in leaves: Light attenuators or antioxidants? Funct. Plant Biol. 30:865–873.Google Scholar
  19. Nozzolillo, Ñ., Isabelle, P., Andersen, O.M., Abou-Zaid, M. 2002. Anthocyanins of jack pine (Pinus banksiana) seedlings. Can. J. Bot. 80:796–801.CrossRefGoogle Scholar
  20. Olenichenko, N.A., Ossipov, V.I., Zagoskina, N.V. 2006. Effect of cold hardening on the phenolic complex of winter wheat leaves. Rus. J. Plant Physiol. 53:495–500.CrossRefGoogle Scholar
  21. Parker, J. 1962. Relationships among cold hardiness, water-soluble protein, anthocyanins, and free sugars in Hedera helix L. Plant Physiol. 37:809–813.CrossRefGoogle Scholar
  22. Rice-Evans, C.A., Miller, N.J., Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2:152–159.CrossRefGoogle Scholar
  23. Tereshchenko, O.Y., Khlestkina, E.K., Gordeeva, E.I., Arbuzova, V.S., Salina, E.A. 2012a. Relationship between anthocyanin biosynthesis and abiotic stress in wheat. In: A. Börner, B. Kobijlski (eds), Proc.15th EWAC Conf., 2011, Novi Sad, pp. 72–75.Google Scholar
  24. Tereshchenko, O.Y., Gordeeva, E.I., Arbuzova, V.S., Börner, A., Khlestkina, E.K. 2012b. The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Commun. 40:334–341.CrossRefGoogle Scholar
  25. Tereshchenko, O.Y., Arbuzova, V.S., Khlestkina, E.K. 2013. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes. J. Cereal Sci. DOI:10.1016/j.jcs.2012.09.010.CrossRefGoogle Scholar
  26. Treutter, D. 2006. Significance of flavonoids in plant resistance: A review. Environ. Chem. Let. 4:147–157.CrossRefGoogle Scholar
  27. Verstraeten, S.V., Keen, C.L., Schmitz, H.H., Fraga, C.G., Oteiza, P.I. 2003. Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radical Biol. Med. 34:84–92.CrossRefGoogle Scholar
  28. Wang, H., Cao, G., Prior, R.L. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304–309.CrossRefGoogle Scholar
  29. Wood, B.W., Grauke, L.J., Payne, J.A. 1998. Provenance variation in pecan. J. Amer. Soc. Hort. Sci. 123:1023–1028.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. I. Gordeeva
    • 1
  • O. Y. Shoeva
    • 1
  • E. K. Khlestkina
    • 1
    Email author
  1. 1.Institute of Cytology and Genetics (ICG)Siberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations