Advertisement

Cereal Research Communications

, Volume 41, Issue 3, pp 468–481 | Cite as

Application of a Rapid Electrophoresis Technique Analysing the Glutenin Subunit Composition of Wheat Genotypes

  • A. KovácsEmail author
  • M. Rakszegi
  • L. Láng
  • W. Ma
  • F. Békés
  • Z. Bedő
Quality and Utilization
  • 1 Downloads

Abstract

The characterization of the old Hungarian varieties and landraces is an important part of Hungarian cereal research and breeding. Analysis of these germplasms with the most up-to-date methodologies results a broad scale of diversity of glutenin alleles, which proves their genetic heterogenicity. Exploitation of this attribute is an untapped possibility for developing modern varieties in our breeding programs. The previous research work revealed this diversity by SDS-PAGE analysis and MALDI-TOF technology. The powerful tool, the high throughput lab-on-a chip technique can facilitate the effectiveness of this function and decreases the cost of the analysis. This study demonstrates the application of this technique for analysing the old varieties. The allelic composition and their effects on bread making quality concluded by means of functional analysis.

Keywords

wheat glutenin lab-on-a-chip MALDI-TOF-MS SE-HPLC 

Abbreviations

HMW GS

high molecular weight glutenin subunits

LMW GS

low molecular weight glutenin subunits

LOC

lab-on-a-chip

MALDI-TOF-MS

matrix-assisted laser desorption/ionization time-of-flight mass spectrometry

SDS-PAGE

sodium dodecyl sulphate polyacrylamide gel electrophoresis

SE-HPLC

size-exclusion high performance liquid chromatography

UPP

unextractable polymeric protein

BEU

Brabender Extensograph Unit

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balázs, G., Baracskai, I., Nádosi, M., Harasztos, A., Békés, F., Tömösközi, S. 2011. Lab-on-a-chip technology in cereal science: Analytical properties and possible application areas. Acta Alimentaria DOI:  https://doi.org/10.1556/AAlim.2011.0003:1-13.
  2. Balázs, G., Tömösközi, S., Harasztos, A., Németh, T., Tamás, A., Morgounov, A., Ma, W., Békés, F. 2012. Advantages and limitation of lab-on-a-chip technique in the analysis of wheat proteins. Cereal Res. Commun. 40:562–572.CrossRefGoogle Scholar
  3. Bangur, R., Batey, I.L., McKenzie, E., MacRitchie, F. 1997. Dependence of extensograph parameters on wheat protein composition measured by SE-HPLC. J. Cereal Sci. 25:237–241.CrossRefGoogle Scholar
  4. Baracskai, I., Balázs, G., Liu, L., Ma, W., Oszvald, M., Newberry, M., Tömösközi, S., Láng, L., Bedõ, Z., Békés, F. 2011. A retrospective analysis of HMW and LMW glutenin alleles of cultivars bred in Martonvásár, Hungary. Cereal Res. Commun. 39:226–237.CrossRefGoogle Scholar
  5. Batey, I.L., Gupta, R.B., MacRitchie, F. 1991. Use of high-performance liquid chromatography in the study of wheat flour proteins: An improved chromatographic procedure. Cereal Chem. 68:207–209.Google Scholar
  6. Bedõ, Z., Vida, Gy., Láng, L., Karsai, I. 1998. Breeding for breadmaking quality using old Hungarian wheat varieties. Euphytica 100:179–182.CrossRefGoogle Scholar
  7. Bedõ, Z., Vida, Gy., Láng, L., Juhász, A., Karsai, I. 1999. Breeding a wheat variety with different lines for technological quality and HMW glutenin composition. J. Genet. Breed. 53:57–62.Google Scholar
  8. Békés, F. 2012. New aspects in quality related wheat research: I. Challenges and achievements (Review). Cereal Res. Commun. 40:159–184.CrossRefGoogle Scholar
  9. Békés, F., Cavanagh, C.R., Martinov, S., Bushuk, W., Wrigley, C.W. 2006a. The Gluten Composition of Wheat Varieties and Genotypes. Part III. Composition table for HMW-GS. https://doi.org/www.aaccnet.org/grainbin/II_HMW_Subunits.pdf
  10. Békés F., Cavanagh, C.R., Martinov, S., Bushuk, W., Wrigley, C.W. 2006b. The Gluten Composition of Wheat Varieties and Genotypes. Part II. Composition table for LMW-GS. https://doi.org/www.aaccnet.org/grainbin/III_LMW_Subunits.pdf
  11. Békés, F., Kemény, S., Morell, M. 2006c. An integrated approach to predicting end-product quality of wheat. Eur. J. Agron. 25:155–162.CrossRefGoogle Scholar
  12. Butow, B.J., Ma, W., Gale, K.R., Cornish, G.B., Rampling, L., Larroque, O., Morell, M.K., Békés, F. 2003. Molecular discrimination of Bx7 alleles demonstrates that a highly expressed high-molecular weight glutenin allele has a major impact on wheat flour dough strength. Theor. Appl. Genet. 107:1524–1532.CrossRefGoogle Scholar
  13. Butow, B.J., Gale, K.R., Ikea, J., Juhász, A., Bedő, Z., Tamás, L., Gianibelli, M.C. 2004. Dissemination of the highly expressed Bx7 glutenin subunit (Glu-B1al allele) in wheat as revealed by novel PCR markers and RP-HPLC. Theor. Appl. Genet. 109:1525–1535.CrossRefGoogle Scholar
  14. D’Ovidio, R., Masci, S., Porceddu, E., Kasarda, D.D. 1997. Duplication of the Bx7 high-molecular weight glutenin subunit gene in bread wheat (Triticum aestivum L.) cultivar ‘Red River 68’. Plant Breed. 116:525–526.CrossRefGoogle Scholar
  15. Gao, X., Appelbee, M.J., Mekuria, G.T., Chalmers, K.J., Mather, D.E. 2012. A second ‘overexpression’ allele at the Glu-B1 high-molecular-weight glutenin locus of wheat: sequence characterisation and functional effects. Theor. Appl. Genet. 124:333–343.CrossRefGoogle Scholar
  16. Gupta, R.B., Khan, K., McRitchie, F. 1993. Biochemical basis of flour properties in bread wheat. I. Effects of variation in the quantity and size distribution of polymeric protein. J. Cereal Sci. 18:23–41.CrossRefGoogle Scholar
  17. Haraszi, R., Békés, F., Ruggiero, K., Gale, K.R., Anderssen, R.S. 2004a. Analysis of wheat grain blends. In: Black, C.K., Panozzo, J.F., Rebetzke, G.J. (eds), Proc. 54th Australian Cer. Chem. Conf. and 11th Wheat Breeders Assembly. RACI, Melbourne, Australia, pp. 362–365.Google Scholar
  18. Haraszi, R., Gras, P.W., Tömösközi, S., Salgó, A., Békés, F. 2004b. The application of a micro Z-arm mixer to characterize mixing properties and water absorption of wheat flour. Cereal Chem. 81:555–560.CrossRefGoogle Scholar
  19. Islam, S., Ma, W., Yan, G., Békés, F., Appels, R. 2012. Modifying processing and health attributes of wheat bread through changes in composition, genetics and breeding. In: Cauvain, S.P., Tran, B. (eds), Bread Making. Improving Quality. 2nd Edition. Woodhead Publishing Limited, Cambridge, UK, pp. 259–296.Google Scholar
  20. Juhász, A., Larroque, O.R., Tamás, L., Hsam, S.L.K., Zeller, F.J., Békés, F., Bedõ, Z. 2003. Bánkúti 1201 — An old Hungarian wheat variety with special storage protein compositions. Theor. Appl. Genet. 107:697–704.CrossRefGoogle Scholar
  21. Kussmann, M.E., Nordhoff, H., Rahbek-Nielsen, S., Haebel, M., Rossel-Larsen, L., Jakobsen, J., Gobom, E., Mirgorodskaya, A., Kroll-Kristensen, L., Roepstorff, P. 1997. MALDI-MS sample preparation techniques designed for various peptide and protein analytes. J. Mass Spectrom. 32:593–601.CrossRefGoogle Scholar
  22. Láng, L., Kiss, T., Bedő, Z. 2011. New group of cultivars from Martonvásár: “walking wheats”. Martonvásár 2: 3–4. (in Hungarian)Google Scholar
  23. Marchylo, B.A., Lukow, O.E., Kruger, J.E. 1992. Quantitative variation in high molecular weight glutenin subunit 7 in some Canadian wheats. J. Cereal Sci. 15:29–37.CrossRefGoogle Scholar
  24. Ng, P.K.W., Pogna, N.E., Mellini, F., Bushuk, W. 1989. Glu-1 allele compositions of the wheat cultivars registered in Canada. J. Genet. Breed. 43:53–59.Google Scholar
  25. Orth, R.A., Bushuk, W. 1972. A comparative study of the proteins of wheats of diverse baking properties. Cereal Chem. 49:268–275.Google Scholar
  26. Payne, P.I., Lawrence, G.J. 1983. Catalogue of alleles for the complex loci Glu-A1, Glu-B1 and Glu-D1 which coded for HMW-GS in hexaploid wheat. Cereal Res. Commun. 11:29–35.Google Scholar
  27. Pogna, N.E., Mellini, F., Beretta, A., Deruffo, A. 1989. The high-molecular-weight glutenin subunits of common wheat cultivars grown in Italy. J. Genet. Breed. 43:17–24.Google Scholar
  28. Radovanovic, N., Cloutier, S. 2003. Gene-assisted selection for high molecular weight glutenin subunits in wheat doubled haploid breeding programs. Mol. Breed. 12:51–59.CrossRefGoogle Scholar
  29. Rhazi, L., Bodard, A.L., Fathollahi, B., Aussenac, T., Maforimbo, E., Skurray, G. 2009. High throughput micro chip-based separation and quantitation of high-molecular-weight glutenin subunits. J. Cereal Sci. 49:272–277.CrossRefGoogle Scholar
  30. Shewry, P.R., Ovidio, R., Lafiandra, D., Jenkins, J.A., Mills, E.N.C., Békés, F. 2009. Wheat grain proteins. In: Khan, K., Shewry, P.R. (eds), Wheat Chemistry and Technology, 4th Edition. AACC Press, St Paul, MN, USA, pp. 223–298.CrossRefGoogle Scholar
  31. Singh, N.K., Donovan, R., MacRitchie, F. 1990. Use of sonication and SE-HPLC in the study of wheat flour proteins. I. Dissolution of total proteins in the absence of reducing agents. Cereal Chem. 67:150–161.Google Scholar
  32. Tömösközi, S., Békés, F., Haraszi, R., Gras, P.W., Varga, J., Salgó, A. 2002. Application of Micro Z-arm mixer in wheat research — Effects of protein addition on mixing properties of wheat dough. Periodica Polytechnica 46:11–28.Google Scholar
  33. Uthayakumaran, S., Batey, I.L., Wrigley, C.W. 2005. On-the-spot identification of grain variety and wheat quality type by Lab-on-a-chip capillary electrophoresis. J. Cereal Sci. 41:371–374.CrossRefGoogle Scholar
  34. Wrigley, C.W., Asenstorfer, R., Batey, I.L., Cornish, G.B., Day, L., Mares, D., Mrva, K. 2009. The biochemical and molecular basis of wheat quality. Chapter 21. In: Carver, B. (ed.), Wheat: Science and Trade. Wiley-Blackwell, Ames, Iowa, USA, pp. 495–520.CrossRefGoogle Scholar
  35. Wrigley, C.W., Békés, F., Bushuk, W. 2006. Chapter 1. Gluten: A balance of gliadin and glutenin. In: Wrigley, C.W., Békés, F., Bushuk, W. (eds), Gliadin and Glutenin. The Unique Balance of Wheat Quality. AACCI Press, St Paul, MN, USA, pp. 3–33.CrossRefGoogle Scholar
  36. Zhen, Z., Mares, D. 1992. Asimple extraction and one-step SDS-PAGE for separating HMW and LMW glutenin subunits of wheat and high molecular weight proteins of rye. J. of Cereal Science 15:63–78.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Kovács
    • 1
    Email author
  • M. Rakszegi
    • 1
  • L. Láng
    • 1
  • W. Ma
    • 2
  • F. Békés
    • 3
  • Z. Bedő
    • 1
  1. 1.Centre for Agricultural Research of HASAgricultural InstituteMartonvásárHungary
  2. 2.State Agricultural Biotechnology CentreMurdoch UniversityPerthAustralia
  3. 3.FBFD PTY LTDBeecroftAustralia

Personalised recommendations