Advertisement

Cereal Research Communications

, Volume 41, Issue 2, pp 199–210 | Cite as

Genetic Analysis and Mapping of Seedling Resistance to Septoria Tritici Blotch in ‘Steele-Nd’/‘Nd 735’ Bread Wheat Population

  • M. MergoumEmail author
  • V. E. Harilal
  • P. K. Singh
  • T. B. Adhikari
  • A. Kumar
  • F. Ghavami
  • E. Elias
  • M. S. Alamri
  • S. F. Kianian
Genetics

Abstract

Septoria tritici blotch (STB) caused by Mycosphaerella graminicola, is one of the most destructive foliar diseases of wheat (Triticum aestivum L.) especially in temperate and humid regions across the world. The susceptibility of recently released varieties, evolution of resistance to fungicides and increasing incidence of STB disease emphasizes the need to understand the genetics of resistance to this disease and to incorporate host resistance into adapted cultivars. This study aimed to decipher the genetics and map the resistance to STB using a recombinant inbred line (RIL) mapping population derived from ‘Steele-ND’ (susceptible parent) and ‘ND 735’ (resistant parent). The RILs were evaluated in three greenhouse experiments, using a North Dakota (ND) isolate of STB pathogen. The mean disease severity of parental genotypes, ‘ND 735’ (11.96%) and ‘Steele-ND’ (66.67%) showed significant differences (p < 0.05). The population segregated for STB and the frequency distribution of RILs indicated quantitative inheritance for resistance. The mean disease severity in RILs ranged from 0 to 71.55% with a mean of 21.98%. The genome map of this population was developed using diversity array technology (DArT) and simple sequence repeat (SSR) markers. The framework linkage map of this population was developed using 469 molecular markers. This map spanned a total distance of 1,789.3 cM and consisted of 17 linkage groups. QTL mapping using phenotypic data and the framework linkage maps detected three QTL through composite interval mapping. One QTL was consistently detected in all experiments on the long arm of chromosome 5B, and explained up to 10.2% phenotypic variation. The other two QTLs, detected in single environments, were mapped to 1D and 7A and explain 13% and 5.5% of the phenotypic variation, respectively. The map position of the consistent QTL on 5BL coincides with the map position of durable resistance gene Stb1 suggesting the importance of this region of ‘ND 735’ as a source of durable STB resistance for the wheat germplasm.

Keywords

wheat Triticum aestivum L. Septoria tritici blotch QTL analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2013_41020199_MOESM1_ESM.pdf (295 kb)
Supplementary material, approximately 294 KB.

References

  1. Adhikari, T.B., Anderson, J.M., Goodwin, S.B. 2003. Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathol. 93:1158–1164.CrossRefGoogle Scholar
  2. Adhikari, T.B., Cavaletto, J.R., Dubcovsky, J., Gieco, J.O., Schlatter, A.R., Goodwin, S.B. 2004a. Molecular mapping of the Stb4 gene for resistance to Septoria tritici blotch in wheat. Phytopathol. 94:1198–1206.CrossRefGoogle Scholar
  3. Adhikari, T.B., Yang, X., Cavaletto, J.R., Hu, X., Buechley, G., Ohm, H.W., Shaner, G., Goodwin, S.B. 2004b. Molecular mapping of the Stb1, a potentially durable gene for resistance to Septoria tritici blotch in wheat. Theor. Appl. Genet. 109:944–953.PubMedCrossRefGoogle Scholar
  4. Adhikari, T.B., Wallwork, H., Goodwin, S.B. 2004c. Microsatellite markers linked to the Stb2 and S tb3 genes for resistance to Septoria tritici blotch. Crop Sci. 44:1403–1411.CrossRefGoogle Scholar
  5. Akbari, M., Wenzl, P., Caig, V., Carling, J., Xia, L., Yang, S.Y., Uszynski, G., Mohler, V., Lehmensiek, A., Kuchel, H., Hayden, M.J., Howes, N., Sharp, P., Vaughan, P., Rathmell, B., Huttner, E., Kilian, A. 2006. Diversity array technology (DArT) for high throughput profiling of the hexaploid wheat genome. Theor. Appl. Genet. 113:1409–1420.PubMedCrossRefGoogle Scholar
  6. Ali, S., Singh, P.K., McMullen, M.P., Mergoum, M., Adhikari, T.B. 2008. Resistance to multiple leaf spot diseases in wheat. Euphytica 159:167–179.CrossRefGoogle Scholar
  7. Arraianio, L.S., Brown, J.K.M. 2006. Identification of isolate-specific and partial resistance to Septoria tritici blotch in 238 European wheat cultivars and breeding lines. Plant Pathol. 55:726–738.CrossRefGoogle Scholar
  8. Arraianio, L.S., Chartrain, L., Bossolini, E., Slatter, H.N., Keller, B., Brown, J.K.M. 2007. A gene in European wheat cultivars for resistance to an African isolate of Mycosphaerella graminicola. Plant Pathol. 56:73–78.Google Scholar
  9. Brading, P.A., Verstappen, E.C.P., Kema, G.H.J., Brown, J.K.M. 2002. A gene-for-gene relationship between wheat and Mycosphaerella graminicola, the Septoria tritici blotch pathogen. Phytopathol. 92:439–445.CrossRefGoogle Scholar
  10. Chartrain, L., Brading, P.A., Widdowson, J.P., Brown, J.K.M. 2004. Partial resistance to Septoria tritici blotch (Mycosphaerella graminicola) in wheat cultivars Arina and Riband. Phytopathol. 94:497–504.CrossRefGoogle Scholar
  11. Chartrain, L., Berry, S.T., Brown, J.K.M. 2005. Resistance of wheat line kavkaz-k4500 l.6.a.4 to Septoria tritici blotch controlled by isolate-specific resistance genes. Phytopathol. 95:664–671.CrossRefGoogle Scholar
  12. Eriksen, L., Borum, F., Jahoor, A. 2003. Inheritance and localization of resistance to Mycosphaerella graminicola causing Septoria tritici blotch and plant height in wheat (Triticum aestivum L.) genome with DNA markers. Theor. Appl. Genet. 107:515–527.PubMedCrossRefGoogle Scholar
  13. Eyal, Z. 1999. The Septoria tritici and Stagnospora nodorum blotch diseases of wheat. Eur. J. Plant Pathol. 105:629–641.CrossRefGoogle Scholar
  14. Eyal, Z., Scharen, A.L., Prescott, J.M., Van Ginkel, M. 1987. The Septoria Diseases of Wheat: The Concepts and Methods of Disease Management. International Maize and Wheat Improvement Center (CIMMYT), Mexico DF, Mexico, 55 pp.Google Scholar
  15. Francki, M.G., Walker, E., Crawford, A.C., Broughton, S., Ohm, H.W., Barclay, I., Wilson, R.E., McLean, R. 2009. Comparison of genetic and cytogenetic maps of hexaploid wheat (Triticum aestivum L.) using SSR and DArT markers. Mol. Genet. Genomics 281:181–191.PubMedCrossRefGoogle Scholar
  16. Gaunt, R.E., Thomson, W.J., Suctcliffe, J. 1986. The assessment of speckled leaf blotch in winter wheat in New Zealand. Ann. Bot. 58:33–38.CrossRefGoogle Scholar
  17. Ghaffary, S.M.T., Robert, O., Laurent, V., Lonnet, P., Magale, E., van der Lee, T.A.J., Visser, R.G.F., Kema, G.H.J. 2011. Genetic analysis of resistance to Septoria tritici blotch in the French winter wheat cultivars Balance and Apache. Theor. Appl. Genet. DOI  https://doi.org/10.1007/s00122-011-1623-7CrossRefGoogle Scholar
  18. Gilbert, J., Woods, S.M. 2001. Leaf spot diseases of spring wheat in southern Manitoba farm fields under conventional and conservation tillage. Can. J. Plant Sci. 81:551–559.Google Scholar
  19. Gilchrist, L., Gomez, B., Gonzalez, R., Fuentes, S., Mujeeb-Kazi, A., Pfeiffer, W., Rajaram, S., Rodriguez, B., Skovmand, B., Van Ginkel, M., Velazquez, C. 1999. Septoria tritici resistance sources and breeding progress at CIMMYT, 1970–99. In: Krupinsky, J. (ed.), Septoria and Stagonospora Diseases of Cereals. CIMMYT, Mexico, pp. 134–139.Google Scholar
  20. Gisi, U., Chin, K.M., Knbapova, G., Farber, R.K., Mohr, U., Parisi, S., Sierotzki, H., Steinfeld, U. 2000. Recent developments in elucidating modes of resistance to phenylamide, DMI and strobilurins fungicides. Crop Protection 19:863–872.CrossRefGoogle Scholar
  21. Gisi, U., Pavic, L., Stanger, C., Hugelshofer, U., Sierotzki, H. 2005. Dynamics of Mycosphaerella graminicola population in response to selection by different fungicides. In: Lyr, H., Russell, P.E., Dehne, H.W., Gisi, U., Kuch, K.H. (eds), Modern Fungicides and Antifungal Compounds II. 14th International Reinhardsbrunn Symposium, AgroConcept, Bonn, Verlag Th. Mann, Gelsenkirchen, Germany, pp. 89–101.Google Scholar
  22. Goodwin, S.B. 2007. Back to basics and beyond: Increasing the level of resistance to Septoria tritici blotch in wheat. Austral. Plant Pathol. 36:532–538.CrossRefGoogle Scholar
  23. Guidet, F., Rogowsky, R., Taylor, C., Song, W., Langridge, P. 1991. Cloning and characterization of a new rye-specific repeat sequence. Genome 34:81–87.CrossRefGoogle Scholar
  24. Jlibene, M., Gustafson, J.P., Rajaram, S. 1994. Inheritance of resistance to Mycosphaerella graminicola in hexaploid wheat. Plant Breed. 112:301–310.CrossRefGoogle Scholar
  25. Kema, G.H.J., Annone, J.G., Sayoud, R., Van Silfhout, C.H., Van Ginkel, J., de Bree, I. 1996. Genetic variation for virulence and resistance in wheat- Mycosphaerella graminicola pathosystem. I. Interactions between pathogen isolates and host cultivars. Phytopathol. 86:200–212.CrossRefGoogle Scholar
  26. King, J.E., Cook, R.J., Melville, S.C. 1983. A review of Septoria diseases of wheat and barley. Ann. App. Biol. 103:354–373.CrossRefGoogle Scholar
  27. Kosambi, D.D. 1994. The estimation of map distances from recombination values. Ann. Eugen. 12:172–175.CrossRefGoogle Scholar
  28. Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, L. 1987. Mapamker: An interactive computer package for constructing primary linkage map for experimental and natural populations. Genomics 1:174–181.PubMedCrossRefGoogle Scholar
  29. Langridge, P., Lagudah, E.S., Holton, T.A., Appels, R., Sharp, P.J., Chalmers, K.J. 2001. Trends in genetic and genomic analyses in wheat: A review. Aust. J. Agri. Res. 53:1043–1077.CrossRefGoogle Scholar
  30. Liu, Y.G., Anderson, J.A., Hu, J., Friesen, T.L., Rasmussen, J.B., Faris, J.D. 2005. A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor. Appl. Genet. 111:782–794.PubMedPubMedCentralCrossRefGoogle Scholar
  31. McCartney, C.A., Brule-Babel, A.L., Lamari, L. 2002. Inheritance of race-specific resistance to Mycosphaerella graminicola in the spring wheat cultivar ST6. Theor. Appl. Genet. 107:1181–1186.CrossRefGoogle Scholar
  32. Mergoum, M., Frohberg, R.C., Miller, J.D., Stack, R.W. 2005. Registration of ‘steele-ND’ Wheat. Crop Sci. 45:1163–1164.CrossRefGoogle Scholar
  33. Mergoum, M., Frohberg, R.C., Singh, P.K., Ali, S., Rasmussen, J.B., Miller, J.D. 2006. Registration of spring wheat germplasm ND 735. Crop Sci. 46:1003–1004.CrossRefGoogle Scholar
  34. Mergoum, M., Singh, P.K., Ali, S., Elias, E.M., Anderson, J.A., Glover, K.D., Adhikari, T.B. 2007. Evaluation of spring wheat germplasm for Septoria diseases. Plant Dis. 91:1310–1315.PubMedCrossRefGoogle Scholar
  35. Mergoum, M., Singh, P.K., Frohberg, R.C., Kianian, S.F., Ghavami, F., Hussain, K., Adhikari, T.B., Harilal, V.E., Simsek, S. 2009. Registration of Steele-ND/ND 735 wheat recombinant inbred lines mapping population. J. Plant Reg. 3:300–306.CrossRefGoogle Scholar
  36. Paillard, S., Schnurbusch, T., Weinzeler, M., Messmer, M., Sourdille, P., Abderhalden, O., Keller, B., Schachermayr, G. 2003. An integrative genetic linkage map of winter wheat (Triticum aestivum L.). Theor. Appl. Genet. 107:1235–1242.PubMedCrossRefGoogle Scholar
  37. Saadaoui, E.M. 1987. Physiologic specialization of Septoria tritici in Morocco. Plant Dis. 71:153–155.CrossRefGoogle Scholar
  38. SAS Institute. 1999. SAS/STAT User’s guide, release 8.2, 8.1, and 8.0. SAA Institute, Cary, NY, USA.Google Scholar
  39. Semagn, F.K., Bjornstad, A., Skinnes, H., Maroy, A.G., Tarkegne, Y., William, M. 2006. Distribution of DArT, AFLP, and SSR markers in a genetic linkage map of a doubled-haploid hexaploid wheat population. Genome 49:545–555.PubMedCrossRefPubMedCentralGoogle Scholar
  40. Simon, M.R., Cordo, C.A. 1997. Inheritance of partial resistance to Septoria tritici in wheat (Triticum aestivum L.): Limitation of pycnidia number and spore production. Agronomie 17:343–347.CrossRefGoogle Scholar
  41. Simon, M.R., Ayala, F.M., Cordo, C.A., Roder, M.S., Borner, A. 2004. Molecular mapping of quantitative trait loci determining resistance to Septoria tritici blotch caused by Mycosphaerella graminicola in wheat. Euphytica 138:41–48.CrossRefGoogle Scholar
  42. Simon, M.R., Khlestkina, E.K., Castillo, N.S., Börner, A. 2010. Mapping quantitative resistance to Septoria tritici blotch in spelt wheat. Eur. J. Plant Pathol. 128:317–324.CrossRefGoogle Scholar
  43. Singh, P.K., Mergoum, M., Ali, S., Adhikari, T.B., Elias, E.M., Hughes, G.R. 2006. Identification of new sources of resistance to tan spot, Stagonospora nodorum blotch, and Septoria tritici blotch of wheat. Crop Sci. 46:2047–2053.CrossRefGoogle Scholar
  44. Singh, P.K., Mergoum, M., Adhikari, T.B., Shah, T., Gavami, F., Kianian, S.F. 2010. Genetic and molecular analysis of wheat tan spot resistance effective against Pyrenophora tritici-repentis races 2 and 5. Mol. Breed. 25:369–379.CrossRefGoogle Scholar
  45. Singh, P.K., Mergoum, M., Adhikari, T.B., Gavami, F., Kianian, S.F. 2011. Genetics and mapping of resistance to spore inoculum and culture filtrate of Phaeosphaeria nodorum in spring wheat line ND 735. Crop Protection 30:141–146.CrossRefGoogle Scholar
  46. Somasco, O.A., Qualset, C.O., Gilchrist, D.G. 1996. Single-gene resistance to Septoria tritici blotch in spring wheat cultivar ‘Tadina’. Plant Breed. 115:261–267.CrossRefGoogle Scholar
  47. Somers, D.G., Isaac, P., Edwards, K. 2004. A high density microsatellite consensus map of bread wheat (Triticum aestivum L.). Theor. Appl. Genet. 109:1105–1114.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Varshney, R.K., Sharma, P.C., Gupta, P.K., Balyan, H.S., Ramesh, B., Roy, J.K., Kumar, A., Sen, A. 1998. Low level of polymorphism detected by SSR probes in bread wheat. Plant Breed. 117:182–184.CrossRefGoogle Scholar
  49. Wang, S., Basten, C.J., Zeng, B. 2004. Windows QTL Cartographer 2.0. Department of Statistics, North Carolina State University, Raleigh, USA.Google Scholar
  50. Zhang, X., Haley, S.D., Jin, Y. 2001. Inheritance of Septoria tritici blotch resistance in winter wheat. Crop Sci. 41:323–326.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • M. Mergoum
    • 1
    Email author
  • V. E. Harilal
    • 1
  • P. K. Singh
    • 2
  • T. B. Adhikari
    • 3
  • A. Kumar
    • 1
  • F. Ghavami
    • 1
  • E. Elias
    • 1
  • M. S. Alamri
    • 4
  • S. F. Kianian
    • 1
  1. 1.Department of Plant SciencesNorth Dakota State UniversityFargoUSA
  2. 2.International Maize and Wheat Improvement Center (CIMMYT)MexicoMexico
  3. 3.Department of Plant PathologyNorth Dakota State UniversityFargoUSA
  4. 4.Nutrition and Food Sciences Dept., College of Food and Agricultural SciencesKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations