Cereal Research Communications

, Volume 41, Issue 2, pp 185–198 | Cite as

The Adaptive Role of Flavonoids: Emphasis on Cereals

  • E. K. KhlestkinaEmail author


The flavonoid biosynthesis pathway yields a large family of phenolic compounds which are involved in many biological activities including plant defense response to a broad spectrum of abiotic and biotic stress factors. In recent years, a wide range of evidences of relationship between the flavonoid biosynthesis and stress has been accumulated based on genetic, physiological and biochemical studies. In this paper, possible mechanisms of counteraction of flavonoid substances to different stress factors are reviewed, and the evidences for relationship between biosynthesis of flavonoid compounds and response to biotic and abiotic stress are summarized with emphasis on cereals.


plant cereal flavonoid biosynthesis anthocyanin stress tolerance gene transcription 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agati, G., Tattini, M. 2010. Multiple functional roles of flavonoids in photoprotection. New Phytol. 186:786–793.PubMedCrossRefGoogle Scholar
  2. André, C.M., Schafleitner, R., Legay, S., Lefèvre, I., Aliaga, C.A., Nomberto, G., Hoffmann, L., Hausman, J.F., Larondelle, Y., Evers, D. 2009. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. Phytochem. 70:1107–1116.CrossRefGoogle Scholar
  3. Ardi, R., Kobiler, I., Jacoby, B., Keen, N.T., Prusky, D. 1998. Involvement of epicatechin biosynthesis in the activation of the mechanism of resistance of avocado fruits to colletotrichum gloeosporioides. Physiol. Mol. Plant. Pathol. 53:269–285.CrossRefGoogle Scholar
  4. Awad, M., DeJager, A. 2002. Relationships between fruit nutrients and concentrations of flavonoids and chlorogenic acid in ‘Elstar’ apple skin. Sci. Hortic. 92:265–276.CrossRefGoogle Scholar
  5. Aziz, N., Paiva, N.L., May, G.D., Dixon, R.A. 2005. Transcriptome analysis of alfalfa glandular trichomes. Planta 221:28–38.PubMedCrossRefGoogle Scholar
  6. Ban, Y., Honda, C., Bessho, H., Pang, X.-M., Moriguchi, T. 2007. Suppression subtractive hybridization identifies genes induced in response to UV-B irradiation in apple skin: Isolation of a putative UDP-glucose 4-epimerase. J. Exp. Bot. 58:1825–1834.PubMedCrossRefGoogle Scholar
  7. Bandy, B., Bechara, E.J.H. 2001. Bioflavonoid rescue of ascorbate at a membrane interface. J. Bioenerg. Biomem. 33:269–277.CrossRefGoogle Scholar
  8. Bogdanova, E.D., Sarbaev, A.T., Makhmudova, K.K. 2002. Resistance of common wheat to bunt. In: Proceedings of the Research Conference on Genetics. Moscow, Russia, pp. 43–44.Google Scholar
  9. Bors, W., Mochel, C., Saran, M. 1994. Flavonoid antioxidants: Rate constants for reactions with oxygen radicals. Met. Enzymol. 234:420–429.CrossRefGoogle Scholar
  10. Casati, P., Walbot, V. 2003. Gene expression profiling in response to ultraviolet radiation in Zea mays genotypes with varying amounts of flavonoids. Plant Physiol. 132:1739–1754.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Castellarin, S.D., Pfeiffer, A., Sivilotti, P., Degan, M., Peterlunger, E., Di Gaspero, G. 2007. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit. Plant Cell Environ. 30:1381–1399.PubMedCrossRefGoogle Scholar
  12. Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. Photobiol. 70:1–9.CrossRefGoogle Scholar
  13. Cheng, H., Yang, H., Zhang, D., Gai, J., Yu, D. 2010. Polymorphisms of soybean isoflavone synthase and flavanone 3-hydroxylase genes are associated with soybean mosaic virus resistance. Mol. Breed. 25:13–24.CrossRefGoogle Scholar
  14. Cho, S., Chen, W., Muehlbauer, F.J. 2005. Constitutive expression of the flavanone 3-hydroxylase gene related to pathotype-specific ascochyta blight resistance in Cicer arietinum L. Physiol. Mol. Plant Pathol. 67:100–107.CrossRefGoogle Scholar
  15. Christensen, A.B., Gregersen, P.L., Olsen, C.E., Collinge, D.B. 1998. A flavonoid 7-O-methyltransferase is expressed in barley leaves in response to pathogen attack. Plant Mol. Biol. 36:219–227.PubMedCrossRefGoogle Scholar
  16. Christie, P.J., Alfenito, M.R., Walbot, V. 1994. Impact of low-temperature stress on general phenylpropanoid and anthocyanin pathways: Enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541–549.CrossRefGoogle Scholar
  17. Chutipaijit, S., Cha-Um, S., Sompornpailin, K. 2009. Differential accumulations of proline and flavonoids in indica rice varieties against salinity. Pak. J. Bot. 41:2497–2506.Google Scholar
  18. Corcoran, M.R., Geissman, T.A., Phinney, B.O. 1972. Tannins as gibberellins antagonists. Plant Physiol. 49:323–330.PubMedPubMedCentralCrossRefGoogle Scholar
  19. Dai, G.H., Nicole, M., Andary, C., Martinez, C., Bresson, E., Boher, B., Daniel, J.F., Geiger, J.P. 1996. Flavonoids accumulate in cell walls, middle lamellae and callose-rich papillae during an incompatible interaction between Xanthomonas campestris pv. malvacearum and cotton. Physiol. Mol. Plant Pathol. 49:285–306.CrossRefGoogle Scholar
  20. Darwin, C. 1883. The Variation of Animals and Plants under Domestication. D. Appleton & Co, New York, USA, 495 pp.Google Scholar
  21. Debeaujon, I., Léon-Kloosterziel, K.M., Koornneef, M. 2000. Influence of the testa on seed dormancy, germination, and longevity in Arabidopsis. Plant Physiol. 122:403–414.PubMedPubMedCentralCrossRefGoogle Scholar
  22. de Colmenares, N.G., Ramírez-Martínez, J.R., Aldana, J.O., Ramos-Niño, M.E., Clifford, M.N., Pékerar, S., Méndez, B. 1998. Isolation, characterisation and determination of biological activity of coffee proanthocyanidins. J. Sci. Food Agric. 77:368–372.CrossRefGoogle Scholar
  23. Degenkolbe, T., Do, P.T., Zuther, E., Repsilber, D., Walther, D., Hincha, D.K., Köhl, K.I. 2009. Expression profiling of rice cultivars differing in their tolerance to long-term drought stress. Plant Mol. Biol. 69:133–153.PubMedCrossRefGoogle Scholar
  24. Derera, N.F., Bhatt, G.M., McMaster, G.J. 1977. On the problem of pre-harvest sprouting of wheat. Euphytica 26:299–308.CrossRefGoogle Scholar
  25. Dixon, R.A., Xie, D.-Y., Sharma, S.B. 2005. Proanthocyanidins — A final frontier in flavonoid research? New Phytol. 165:9–28PubMedCrossRefGoogle Scholar
  26. Doster, M.A., Michailides, T.J. 1999. Relationship between shell discoloration of pistachio nuts and incidence of fungal decay and insect infestation. Plant Dis. 83:259–264.PubMedCrossRefGoogle Scholar
  27. Duran, J.M., Retamal, N. 1989. Coat structure and regulation of dormancy in Sinapis arvensis L. seeds. J. Plant Physiol. 135:218–222.CrossRefGoogle Scholar
  28. Erlejman, A.G., Verstraeten, S.V., Fraga, C.G., Oteiza, P.I. 2004. The interaction of flavonoids with membranes: Potential determinant of flavonoid antioxidant effects. Free Radical Res. 38:1311–1320.CrossRefGoogle Scholar
  29. Farrant, J.M. 2000. A comparison of mechanisms of desiccation tolerance among three angiosperm resurrection plant species. Plant Ecol. 151:29–39.CrossRefGoogle Scholar
  30. Feild, T.S., Lee, D.W., Holbrook, N.M. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Plant Physiol. 127:566–574.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Feucht, W., Schmid, P.P.S. 1983. Selektiver histochemischer Nachweis von Flavanen (Catechinen) mit p-Dimethylaminozimtaldehyd in Sprossen einiger Obstgehölze (Selective histochemical detection of flavans (catechins) with p-dimethylaminometaldehyde in some fruit trees). Gartenbauwiss. 48:119–124. (in German)Google Scholar
  32. Fischbach, R.J., Kossmann, B., Panten, H., Steinbrecher, R., Heller, W., Seidlitz, H.K., Sandermann, H., Hertkorn, N., Schnitzler, J.P. 1999. Seasonal accumulation of ultraviolet B screening pigments in needles of Norway spruce (Picea abies (L.) Karst.). Plant Cell Environ. 22:27–37.CrossRefGoogle Scholar
  33. Fofana, B., Benhamou, N., McNally, D.J., Labbé, C., Séguin, A., Bélanger, R.R. 2005. Suppression of induced resistance in cucumber through disruption of the flavonoid pathway. Phytopath. 95:114–123.CrossRefGoogle Scholar
  34. Freed, R.D., Everson, E.H., Ringlund, K., Gullord, M. 1976. Seed coat color in wheat and the relationship to seed dormancy at maturity. Cereal Res. Commun. 4:147–149.Google Scholar
  35. Friedman, M. 2007. Overview of antibacterial, antitoxin, antiviral, and antifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 51:116–134.PubMedCrossRefGoogle Scholar
  36. Funnell, D.L., Pedersen, J.F. 2006. Association of plant color and pericarp color with colonization of grain by members of Fusarium and Alternaria in near-isogenic sorghum lines. Plant Dis. 90:411–418.PubMedCrossRefGoogle Scholar
  37. Gelman, N.S. 1951. Wheat Grain Dehydrogenases. Grain Biochemistry. Proc. Acad. Sci. USSR, pp. 17–33.Google Scholar
  38. Gfeller, F., Svejda, F. 1960. Inheritance of post-harvest seed dormancy and kernel colour in spring wheat lines. Can. J. Plant Sci. 40:1–6.CrossRefGoogle Scholar
  39. Giovanini, M.P., Puthoff, D.P., Nemacheck, J.A., Mittapalli, O., Saltzmann, K.D., Ohm, H.W., Shukle, R.H., Williams, C.E. 2006. Gene-for-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol. Plant-Microbe Interact. 19:1023–1033.PubMedCrossRefGoogle Scholar
  40. Gould, K.S., Markham, K.R., Smith, R.H., Goris, J.J. 2000. Functional role of anthocyanins in the leaves of Quintinia serrata A. Cunn. J. Exp. Bot. 51:1107–1115.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gould, K.S. 2004. Nature’s Swiss army knife: The diverse protective roles of anthocyanins in leaves. J. Biomed. Biotech. 5:314–320.CrossRefGoogle Scholar
  42. Graham, M.Y. 2005. The diphenylether herbicide lactofen induces cell death and expression of defense-related genes in soybean. Plant Physiol. 139:1784–1794.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Green, F.B., Corcoran, M.R. 1975. Inhibitory action of five tannins on growth induced by several gibberellins. Plant Physiol. 56:801–806.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gutha, L.R., Casassa, L.F., Harbertson, J.F., Naidu, R.A. 2010. Modulation of flavonoid biosynthetic pathway genes and anthocyanins due to virus infection in grapevine (Vitis vinifera L.) leaves. BMC Plant Biol. 10:187.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Halbwirth, H., Fischer, T.C., Roemmelt, S., Spinelli, F., Schlangen, K., Peterek, S., Sabatini, E., Messina, C., Speakman, J.B., Andreotti, C., Rademacher, W., Bazzi, C., Costa, G., Treutter, D., Forkmann, G., Stich, K. 2003. Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight. Z. Naturforsch. 58:765–770.CrossRefGoogle Scholar
  46. Hale, K.L., McGrath, S.P., Lombi, E., Stack, S.M., Terry, N., Pickering, I.J., George, G.N., Pilon-Smits, E.A. 2001. Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol. 126:1391–1402.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Hale, K.L., Tufan, H.A., Pickering, I.J., George, G.N., Terry, N., Pilon, M., Pilon-Smits, E.A.H. 2002. Anthocyanins facilitate tungsten accumulation in Brassica. Physiol. Plant. 116:351–358.CrossRefGoogle Scholar
  48. Hao, Z., Wang, L., He, Y., Liang, J., Tao, R. 2011. Expression of defense genes and activities of antioxidant enzymes in rice resistance to rice stripe virus and small brown planthopper. Plant Physiol. Biochem. 49:744–751.PubMedCrossRefGoogle Scholar
  49. Hernandez, I., Alegre, L., Munne-Bosch, S. 2004. Drought-induced changes in flavonoids and other low molecular weight antioxidants in Cistus clusii grown under Mediterranean field conditions. Tree Physiol. 24:1303–1311.PubMedCrossRefGoogle Scholar
  50. Hoch, W.A., Singsaas, E.L., McCown, B.H. 2003. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Plant Physiol. 133:1296–1305.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hutangura, P., Mathesius, U., Jones, M.G.K., Rolfe, B.G. 1999. Auxin induction is a trigger for root gall formation caused by root-knot nematodes in white clover and is associated with the activation of the flavonoid pathway. Aust. J. Plant Physiol. 26:221–231.Google Scholar
  52. Ibraheem, F., Gaffoor, I., Chopra, S. 2010. Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in sorghum bicolor. Genetics 184:915–926.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Ithal, N., Reddy, A.R. 2004. Rice flavonoid pathway genes, OsDfr and OsAns, are induced by dehydration, high salt and ABA, and contain stress responsive promoter elements that interact with the transcription activator, OsC1-MYB. Plant Sci. 166:1505–1513.CrossRefGoogle Scholar
  54. Izdebski, R. 1992. Utilization of rye genetic resources — initial material selection. Hereditas 116:179–185.CrossRefGoogle Scholar
  55. Jasiñski, M., Kachlicki, P., Rodziewicz, P., Figlerowicz, M., Stobiecki, M. 2009. Changes in the profile of flavonoid accumulation in Medicago truncatula leaves during infection with fungal pathogen Phoma medicaginis. Plant Physiol. Biochem. 47:847–853.PubMedCrossRefGoogle Scholar
  56. Keilig, K., Ludwig-Müller, J. 2009. Effect of flavonoids on heavy metal tolerance in Arabidopsis thaliana seedlings. Bot. Stud. 50:311–318.Google Scholar
  57. Keller, M., Rogiers, S.Y., Schultz, H.R. 2003. Nitrogen and ultraviolet radiation modify grapevines’ susceptibility to powdery mildew. Vitis 42:87–94.Google Scholar
  58. Kelsey, R.G., Reynolds, G.W., Rodriguez, E. 1984. The chemistry of biologically active constituents secreted and stored in plant glandular trichomes. In: Rodriguez, E., Healey, P.L., Mehta, I. (eds), Biology and Chemistry of Plant Trichomes. Plenum Press, New York, USA, pp. 187–241.CrossRefGoogle Scholar
  59. Khan, M., Cavers, P.B., Kane, M., Thompson, K. 1996. Role of the pigmented seed coat of proso millet (Panicum miliaceum L.) in imbibition, germination and seed persistence. Seed Sci. Res. 7:21–25.CrossRefGoogle Scholar
  60. Khlestkina, E.K., Röder, M.S., Salina, E.A. 2008. Relationship between homoeologous regulatory and structural genes in allopolyploid genome — A case study in bread wheat. BMC Plant Biol. 8:88.PubMedPubMedCentralCrossRefGoogle Scholar
  61. Khlestkina, E.K., Tereshchenko, O.Yu., Salina, E.A. 2009. Anthocyanin biosynthesis genes location and expression in wheat-rye hybrids. Mol. Genet. Genom. 282:475–485.CrossRefGoogle Scholar
  62. Kolb, C.A., Käser, M.A., Kopecky, J., Zotz, G., Riederer, M., Pfündel, E.E. 2001. Effects of natural intensities of visible and ultraviolet radiation on epidermal ultraviolet screening and photosynthesis in grape leaves. Plant Physiol. 127:863–875.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Koskimäki, J.J., Hokkanen, J., Laura Jaakola, L., Suorsa, M., Tolonen, A., Mattila, S., Pirttilä, A.M., Hohtola, A. 2009. Flavonoid biosynthesis and degradation play a role in early defense responses of bilberry (Vaccinium myrtillus) against biotic stress. Eur. J. Plant Pathol. 125:629–640.CrossRefGoogle Scholar
  64. Kottapalli, K.R., Rakwal, R., Satoh, K., Shibato, J., Kottapalli, P., Iwahashi, H., Kikuchi, S. 2007. Transcriptional profiling of indica rice cultivar IET8585 (Ajaya) infected with bacterial leaf blight pathogen Xanthomonas oryzae pv oryzae. Plant Physiol. Biochem. 45:834–850.PubMedCrossRefGoogle Scholar
  65. Krolicka, A., Szpitter, A., Gilgenast, E., Romanik, G., Kaminski, M., Lojkowska, E. 2008. Stimulation of antibacterial naphthoquinones and flavonoids accumulation in carnivorous plants grown in vitro by addition of elicitors. Enzyme Microb. Technol. 42:216–221.CrossRefGoogle Scholar
  66. Kumar, V., Sharma, S.S. 1999. Nutrient deficiency-dependent anthocyanin development in Spirodela Polyrhiza L. Schleid. Biol. Plant. 42:621–624.CrossRefGoogle Scholar
  67. Kytridis, V.-P., Manetas, Y. 2006. Mesophyll versus epidermal anthocyanins as potential in vivo antioxidants: Evidence linking the putative antioxidant role to the proximity of oxy-radical source. J. Exp. Bot. 57:2203–2210.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lachman, J., Dudjak, J., Miholová, D., Kolihová, D., Pivec, V. 2005. Effect of cadmium on flavonoid content in young barley (Hordeum sativum L.) plants. Plant Soil Environ. 51:513–516.CrossRefGoogle Scholar
  69. Lee, S.-H., Lee, K.-W., Kim, K.-Y., Choi, G.J., Yoon, S.H., Ji, H.C., Seo, S., Lim, Y.C., Ahsan, N. 2009. Identification of salt-stress induced differentially expressed genes in barley leaves using the annealing-control-primer-based GeneFishing technique. Afr. J. Biotech. 8:1326–1331.Google Scholar
  70. Li, J., Ou-Lee, T.M., Raba, R., Amundson, R.G., Last, R.L. 1993. Arabidopsis flavonoid mutants are hypersensitive to UV-B irradiation. Plant Cell 5:171–179.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Li, Y.G., Tanner, G., Larkin, P. 1996. The DMACA-HCl protocol and the threshold proanthocyanidin content for bloat safety in forage legumes. J. Sci. Food Agric. 70:89–101.CrossRefGoogle Scholar
  72. Link, K.P., Walker, J.C. 1933. The isolation of catechol from pigmented onion scales and its significance in relation to disease resistance in onions. J. Biol. Chem. 100:379–383.Google Scholar
  73. Liu, X., Bai, J., Huang, L., Zhu, L., Liu, X., Weng, N., Reese, J.C., Harris, M., Stuart, J.J., Chen, M.S. 2007. Gene expression of different wheat genotypes during attack by virulent and avirulent Hessian fly (Mayetiola destructor) larvae. J. Chem. Ecol. 33:2171–2194.PubMedCrossRefGoogle Scholar
  74. Liu, H., Mou, Y., Zhao, J., Wang, J., Zhou, L., Wang, M., Wang, D., Han, J., Yu, Z., Yang, F. 2010. Flavonoids from Halostachys caspica and their antimicrobial and antioxidant activities. Molecules 15:7933–7945.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Louise, N.W., Séverin, T.N., Raymond, F., Xavier, E.F., Martine, D. 2011. Flavonoid compounds synthesis by cocoa fruits (Theobroma cacao L.) in response to Phytophthora megakarya infection. Res. J. Agric. Biol. Sci. 7:335–342.Google Scholar
  76. Marbach, I., Meyer, A.M. 1974. Permeability of seed coats to water as related to drying conditions and metabolism of phenolics. Plant Physiol. 54:817–820.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Marrs, K.A., Walbot, V. 1997. Expression and RNA splicing of the maize glutathione S-transferase Bronze2 is regulated by cadmium and other stresses. Plant Physiol. 113:93–102.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mayr, U., Michalek, S., Treutter, D., Feucht, W. 1997. Phenolic compounds of apple and their relationship to scab resistance. J. Phytopathol. 145:69–75.CrossRefGoogle Scholar
  79. McMullen, D., Simcox, K. 1995. Genome organisation of disease and insect resistant genes in maize. Mol. Plant Microbe Int. 8:811–815.CrossRefGoogle Scholar
  80. Meldgaard, M. 1992. Expression of chalcone synthase, dihydroflavonol reductase, and flavanone-3-hydroxylase in mutants of barley deficient in anthocyanin and proanthocyanidin biosynthesis. Theor. Appl. Genet. 83:695–706.PubMedCrossRefGoogle Scholar
  81. Metlitsky, L.V., Ozeretskovskaya, O.L., Korableva, N.P., Salkova, E.G., Vasilyeva, K.V., Vasyukova, N.I., Protsenko, M.A., Chalova, L.I., Chalenko, G.I., Platonova, T.A., Karavaeva, K.A., Lyubimova, N.V., Ladyzhenskaya, N.P., Gladkikh, T.A., Davydova, M.A., Bulantseva, E.A., Zvyagintseva, Y.V., Morozova, N.P. 1984. Biochemistry of Plant Immunity, Dormancy and Aging. Nauka, Moscow, USSR, 264 pp.Google Scholar
  82. Mehdy, M.C., Lamb, C.J. 1987. Chalcone isomerase cDNA cloning and mRNA induction by fungal elicitor, wounding and infection. EMBO J. 6:1527–1533.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Miranda, M., Ralph, S.G., Mellway, R., White, R., Heath, M.C., Bohlmann, J., Constabel, C.P. 2007. The transcriptional response of hybrid poplar (Populus trichocarpa × P. deltoides) to infection by Melampsora medusae leaf rust involves induction of flavonoid pathway genes leading to the accumulation of proanthocyanidins. Mol. Plant Microbe Interact. 20:816–831.PubMedCrossRefGoogle Scholar
  84. Nagata, T., Yamada, H., Du, Z., Todoriki, S., Kikuchi, S. 2005. Microarray analysis of genes that respond to gamma-irradiation in Arabidopsis. J. Agric. Food. Chem. 53:1022–1030.PubMedCrossRefGoogle Scholar
  85. Neill, S.O., Gould, K.S. 2003. Anthocyanins in leaves: Light attenuators or antioxidants? Funct. Plant Biol. 30:865–873.CrossRefGoogle Scholar
  86. Nemat-Alla, M.M., Younis, M.E. 1995. Herbicide effects on phenolic metabolism in maize (Zea mays L.) and soybean (Glycine max L.) seedlings. J. Exp. Bot. 46:1731–1736.CrossRefGoogle Scholar
  87. Nijveldt, R.J., van Nood, E., van Hoorn, D.E., Boelens, P.G., van Norren, K., van Leeuwen, P.A. 2001. Flavonoids: A review of probable mechanisms of action and potential applications. Am. J. Clin. Nutr. 74:418–425.PubMedCrossRefGoogle Scholar
  88. Nikiforova, V., Freitag, J., Kempa, S., Adamik, M., Hesse, H., Hoefgen, R. 2003. Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: Interlacing of biosynthetic pathways provides response specificity. Plant J. 33:633–650.PubMedCrossRefGoogle Scholar
  89. Nilson-Ehle, H. 1914. Zur Kenntnis der mit der Keimungsphysiologie des Weizens in Zusammenhang stehenden inneren Faktoren (To the knowledge of the germination physiology of wheat in relation with internal factors). Z. Pflanzenzucht. 2:153–187. (in German)Google Scholar
  90. Novotelnov, N.V., Ezhov, I.S. 1954. About antibiotic and antioxidant properties of grain yellow pigments. Proc. Acad. Sci. USSR 99:297–300.Google Scholar
  91. Nozzolillo, Ñ., Isabelle, P., Andersen, O.M., Abou-Zaid, M. 2002. Anthocyanins of jack pine (Pinus banksiana) seedlings. Can. J. Bot. 80:796–801.CrossRefGoogle Scholar
  92. Oh, J.E., Kim, Y.H., Kim, J.H., Kwon, Y.R., Lee, H. 2010. Enhanced level of anthocyanin leads to increased salt tolerance in Arabidopsis PAP1-D plants upon sucrose treatment. J. Korean Soc. Appl. Biol. Chem. 54:79–88.Google Scholar
  93. Ohyanagi, H., Tanaka, T., Sakai, H., Shigemoto, Y., Yamaguchi, K., Habara, T., Fujii, Y., Antonio, B.A., Nagamura, Y., Imanishi, T., Ikeo, K., Itoh, T., Goiobori, T., Sasaki, T. 2006. The rice annotation project database (RAB-DB): Nub for Oryza sativa ssp. Japonica genome information. Nucl. Acids Res. 34:741–744.CrossRefGoogle Scholar
  94. Olah, A.F., Sherwood, R.T. 1973. Glycosidase activity and flavonoid accumulation in alfalfa infected by Ascochyta imperfecta. Phytopathol. 63:739–742.CrossRefGoogle Scholar
  95. Olenichenko, N.A., Ossipov, V.I., Zagoskina, N.V. 2006. Effect of cold hardening on the phenolic complex of winter wheat leaves. Rus. J. Plant Physiol. 53:495–500.CrossRefGoogle Scholar
  96. Padmalatha, K.V., Dhandapani, G., Kanakachari, M., Kumar, S., Dass, A., Patil, D.P., Rajamani, V., Kumar, K., Pathak, R., Rawat, B., Leelavathi, S., Reddy, P.S., Jain, N., Powar, K.N., Hiremath, V., Katageri, I.S., Reddy, M.K., Solanke, A.U., Reddy, V.S., Kumar, P.A. 2012. Genome-wide transcriptomic analysis of cotton under drought stress reveal significant down-regulation of genes and pathways involved in fibre elongation and up-regulation of defense responsive genes. Plant Mol. Biol. 78:223–246.PubMedCrossRefGoogle Scholar
  97. Padmavati, M., Sakthivel, N., Thara, K.V., Reddy, A.R. 1997. Differential sensitivity of rice pathogens to growth inhibition by flavonoids. Phytochem. 46:499–502.CrossRefGoogle Scholar
  98. Päsold, S., Siegel, I., Seidel, S., Ludwig-Müller, J. 2010. Flavonoid accumulation in Arabidopsis thaliana root galls caused by the obligate biotrophic pathogen Plasmodiophora brassicae. Mol. Plant Pathol. 11:545–562PubMedPubMedCentralCrossRefGoogle Scholar
  99. Plaza, B.M., Jimenez, S., Segura, M.L., Contreras, J.I., Lao, M.T. 2009. Physiological stress caused by salinity in Cordyline Fruticosa and its indicators. Commun. Soil Sci. Plant Anal. 40:473–484.CrossRefGoogle Scholar
  100. Rice-Evans, C.A., Miller, N.J., Paganga, G. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2:152–159.CrossRefGoogle Scholar
  101. Rusak, G., Kraja, M., Krsnik-Rasol, M., Gutzeit, H.O. 2007. Quercetin influences response in Nicotiana megalosiphon infected by satellite-associated cucumber mosaic virus. J. Plant Dis. Protect. 114:145–150.CrossRefGoogle Scholar
  102. Ryan, K.G., Swinny, E.E., Markham, K.R., Winefield, C. 2002. Flavonoid gene expression and UV photoprotection in transgenic and mutant Petunia leaves. Phytochem. 59:23–32.CrossRefGoogle Scholar
  103. Scalbert, A. 1991. Antimicrobial properties of tannins. Phytochem. 30:3875–3883.CrossRefGoogle Scholar
  104. Schafleitner, R., Gutierrez Rosales, R.O., Gaudin, A., Alvarado Aliaga, C.A., Nomberto Martinez, G., Tincopa Marca, L.R., Avila Boliva, L., Mendiburu Delgado, F., Simon R., Bonierbale, M. 2007. Capturing candidate drought tolerance traits in two native Andean potato clones by transcription profiling of field grown plants under water stress. Plant Physiol. Biochem. 45:673–690.PubMedCrossRefGoogle Scholar
  105. Schmitz-Hoerner, R., Weissenböck, G. 2003. Contribution of phenolic compounds to the UV-B screening capacity of developing barley primary leaves in relation to DNA damage and repair under elevated UV-B levels. Phytochem. 64:243–255.CrossRefGoogle Scholar
  106. Shiozaki, N., Hattori, I., Gojo, R., Tezuka, T. 1999. Activation of growth and nodulation in a symbiotic system between pea plants and legumious bacteria. J. Photochem. Photobiol. 50:33–37.CrossRefGoogle Scholar
  107. Skadhauge, B., Thomsen, K., von Wettstein, D. 1997. The role of barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147–160.CrossRefGoogle Scholar
  108. Skórzynska-Polit, E., Drazkiewicz, M., Wianowska, D., Maksymiec, W., Dawidowicz, A.L., Tukiendorf, A. 2004. The influence of heavy metal stress on the level of some flavonols in the primary leaves of Phaseolus coccineus. Acta Physiol. Plant. 26:247–254.CrossRefGoogle Scholar
  109. Snyder, B.A., Nicholson, R.L. 1990. Synthesis of phytoalexins in Sorghum as a site-specific response to fungal ingress. Science 248:1637–1639.PubMedCrossRefGoogle Scholar
  110. Solecka, D., Kacperska, A. 2003. Phenylpropanoid deficiency affects the course of plant acclimation to cold. Physiol. Plant 119:253–262.CrossRefGoogle Scholar
  111. Stewart, A.J., Chapman, W., Jenkins, G.I., Graham, I., Martin, T., Crozier, A. 2001. The effect of nitrogen and phosphorus deficiency on flavonol accumulation in plant tissues. Plant Cell Environ. 24:1189–1197.CrossRefGoogle Scholar
  112. Steyn, W.J., Wand, S.J.E., Holcroft, D.M., Jacobs, G. 2002. Anthocyanins in vegetative tissues: A proposed unified function in photoprotection. New Phytol. 155:349–361.CrossRefGoogle Scholar
  113. Strumeyer, D.H., Malin, M.J. 1975. Condensed tannins in grain sorghum: Isolation, fractionation, and characterization. J. Agric. Food Chem. 23:909–914.PubMedCrossRefGoogle Scholar
  114. Suzuki, T., Honda, Y., Mukasa, Y. 2005. Effects of UV-B radiation, cold and desiccation stress on rutin concentration and rutin glucosidase activity in tartary buckwheat (Fagopyrum tataricum) leaves. Plant Sci. 168:1303–1307.CrossRefGoogle Scholar
  115. Tegelberg, R., Julkunen-Tiitto, R., Aphalo, P.J. 2004. Red:far-red light ratio and UV-B radiation: Their effects on leaf phenolics and growth of silver birch seedlings. Plant Cell Environ. 27:1005–1013.CrossRefGoogle Scholar
  116. Tereshchenko, O.Y., Khlestkina, E.K., Gordeeva, E.I., Arbuzova, V.S., Salina, E.A. 2012a. Relationship between anthocyanin biosynthesis and abiotic stress in wheat. In: Börner, A., Kobijlski, B. (eds), Proc. 15th EWAC Conf., 2011, Novi Sad, Serbia, pp. 72–75.Google Scholar
  117. Tereshchenko, O.Y., Gordeeva, E.I., Arbuzova, V.S., Börner, A., Khlestkina, E.K. 2012b. The D genome carries a gene determining purple grain colour in wheat. Cereal Res. Commun. 40:408–415.Google Scholar
  118. Tereshchenko, O.Y., Arbuzova, V.S., Khlestkina, E.K. 2013. Allelic state of the genes conferring purple pigmentation in different wheat organs predetermines transcriptional activity of the anthocyanin biosynthesis structural genes. J. Cereal Sci. 57:10–13.CrossRefGoogle Scholar
  119. Tolra, R., Barcelo, J., Poschenrieder, C. 2009. Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance. J. Inorg. Biochem. 103:1486–1490.PubMedCrossRefGoogle Scholar
  120. Ubi, B.E, Honda, C., Bessho, H., Kondo, S., Wada, M., Kobayashi, S. 2006. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 170:571–578.CrossRefGoogle Scholar
  121. Verstraeten, S.V., Keen, C.L., Schmitz, H.H., Fraga, C.G., Oteiza, P.I. 2003. Flavan-3-ols and procyanidins protect liposomes against lipid oxidation and disruption of the bilayer structure. Free Radical Biol. Med. 34:84–92.CrossRefGoogle Scholar
  122. Wahid, A., Ghazanfar, A. 2006. Possible involvement of some secondary metabolites in salt tolerance of sugarcane. J. Plant Physiol. 163:723–730.PubMedCrossRefGoogle Scholar
  123. Walia, H., Wilson, C., Condamine, P., Liu, X., Ismail, A.M., Zeng, L., Wanamaker, S.I., Mandal, J., Xu, J., Cui, X., Close, T.J. 2005. Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage. Plant Physiol. 139:822–835.PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang, H., Cao, G., Prior, R.L. 1997. Oxygen radical absorbing capacity of anthocyanins. J. Agric. Food Chem. 45:304–309.CrossRefGoogle Scholar
  125. Watkinson, J.I., Sioson, A.A., Vasquez-Robinet, C., Shukla, M., Kumar, D., Ellis, M., Heath, L.S., Ramakrishnan, N., Chevone, B., Watson, L.T., van Zyl, L., Egertsdotter, U., Sederoff, R.R., Grene, R. 2003. Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol. 133:1702–1716.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Watkinson, J.I., Hendricks, L., Sioson, A.A., Vasquez-Robinet, C., Stromberg, V., Heath, L.S., Schuler, M., Bohnert, H.J., Bonierbale, M., Grene, R. 2006. Accessions of Solanum tuberosum ssp. andigena show differences in photosynthetic recovery after drought stress as reflected in gene expression profiles. Plant Sci. 171:745–758.CrossRefGoogle Scholar
  127. Wyatt, J.E. 1977. Seed coat and water absorption properties of seed of near-isogenic snap bean lines differing in seed coat color. J. Am. Soc. Hortic. Sci. 102:478–480.Google Scholar
  128. Yoshida, Y., Goto, T., Hirai, M., Masuda, M. 2002. Anthocyanin accumulation in strawberry fruits as affected by nitrogen nutrition. In: Hietaranta, T., Linna, M.-M., Palonen, P., Parikka, P. (eds), Acta Horticulturae, Vol. 567, ISHS, Tampere, Finland.Google Scholar
  129. Zagoskina, N.V., Alyavina, A.K., Gladyshko, T.O., Lapshin, P.V., Egorova, E.A., Bukhov, N.G. 2005. Ultraviolet rays promote development of photosystem II photochemical activity and accumulation of phenolic compounds in the tea callus culture (Camellia sinensis). Rus. J. Plant Physiol. 52:731–739.CrossRefGoogle Scholar
  130. Zagoskina, N.V., Goncharuk, E.A., Alyavina, A.K. 2007. Effect of cadmium on the phenolic compounds formation in the callus cultures derived from various organs of the tea plant. Rus. J. Plant Physiol. 54:237–243.CrossRefGoogle Scholar
  131. Zakhleniuk, O.V., Raines, C.A., Lloyd, J.C. 2001. Pho3: Aphosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 212:529–534.PubMedCrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Institute of Cytology and Genetics (ICG)Siberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation

Personalised recommendations