Cereal Research Communications

, Volume 41, Issue 1, pp 170–181 | Cite as

Heterosis and Interrelationship Study on the Values of the Maize Kernel’s Major Ingredients and Its Thousand Weight

  • É. ErdeiEmail author
  • H. Kovácsné Oskolás
  • G. Tikász
  • P. Pepó


Five inbreds (UDL1, UDL4, UDL5, UDL6, 126) from our preliminary maize improvement program for increased starch content and some of their hybrids were grown in 2008 at the field of Horticultural Institute, Debrecen University. Three chemical parameters (starch-, protein-, oil content) and the weighing of one physical trait (thousand-kernel weight) were analyzed. The starch content varied from 64.29–70.80% in lines and from 70.84–72.29% in case of hybrids. Protein content in the dry material was between 9.04–12.62% in case of the parent lines and it was 7.61–9.56% in the single cross hybrids. Strong negative correlation (r = −0.834**) was found between starch and protein content of the examined hybrids. The oil content varied from 2.70–3.64% and 2.87–3.39% in lines and hybrids, respectively. The thousand-kernel weight (TKW) varied between 213.6–341.3 g in case of the lines and it was 314.3-426.3 g in hybrids. Significant differences were found among hybrids in TKW (SD5% = 34.66%). Heterosis was experienced in the starch content of UDH6 hybrid. Both the relative and absolute values of heterosis for starch content and kernel weight were positive for each single cross hybrid.


maize hybrids hybrid vigour heterosis starch content protein content 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

42976_2013_41010170_MOESM1_ESM.pdf (21 kb)
Supplementary material, approximately 20.7 KB.


  1. Ahmadzadeh, A.E., Lee, M., Tollenaar, M. 2004. Heterosis for leaf CO2 exchange rate during grain filling in maize. Crop. Sci. 44:2095–2100.CrossRefGoogle Scholar
  2. Bálint, A. 1977. A fehérjeképződés genetikája (Genetics of protein formation). In: Bálint, A. (ed.), Gazdasági növényeink produkciógenetikája (Production Genetics of Crops). Akadémiai Kiadó, Budapest, Hungary, pp. 107–122. (in Hungarian)Google Scholar
  3. Birchlera, A.J., Augera, L.D., Riddlea, C.N. 2003. In search of the molecular basis of heterosis. Plant Cell 15:2236–2239.CrossRefGoogle Scholar
  4. Bódi, Z. 2007. A genetikai polimorfizmus, címeralkotó elemek és néhány minőségi tulajdonság vizsgálata kukorica genotípusoknál (Investigation of genetic polymorphism, tassel components and some quantitative features in maize genotypes). Ph.D. Thesis, Debrecen, Hungary, 39 pp. (in Hungarian)Google Scholar
  5. Boyer, C.D., Shannon, J.C. 1987. Carbohydrates of the kernel. In: Watson, S.A., Ramstad, P.E. (eds), Corn: Chemistry and Technology. Am. Assoc. Cereal Chem., St. Paul, MN, USA, pp. 253–272.Google Scholar
  6. Clark, D., Dudley, J.W., Rocheford, T.R., LeDeaux, J.R. 2006. Genetic analysis of corn kernel chemical composition in the random mated 10 generation of the cross of generations 70 of IHO × ILO. Crop Sci. 46:807–819.CrossRefGoogle Scholar
  7. Dai, M.H., Zhao, J.R., Yang, G.H., Wang, R.H. 2010. Comparison between different ecological regions on maize yield and agronomic characters. Chinese Agricultural Science Bulletin 26 (11):127–131.Google Scholar
  8. Davenport, C.B. 1908. Degeneration, albinism and inbreeding. Science 28:454–455.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Dudley, J.W., Lambert, R.J. 1992. Ninety generations of selection for oil and protein in maize. Maydica 37:81–87.Google Scholar
  10. Dudley, J.W., Dijkhuizen, A., Paul, C., Coates, S.T., Rocheford, T.R. 2004. Effects of random mating on marker-QTL associations in the cross of the Illinois high protein × Illinois low protein maize strains. Crop Sci. 44:1419–1428.CrossRefGoogle Scholar
  11. Dudley, J.W., Lambert, R.J. 2004. 100 generations of selection for oil and protein in corn. Plant Breed. Rev. 24:97–110.Google Scholar
  12. Dudley, J.W., Clark, D., Rocheford, T.R., LeDeaux, J.R. 2007. Genetic analysis of corn kernel chemical composition in the random mated 7 generation of the cross of generations 70 of IHP × ILP. Crop Sci. 47:45–57.CrossRefGoogle Scholar
  13. East, E.M. 1908. Inbreeding in corn. Connecticut Agric. Exp. Stn. Report 1907:419–428.Google Scholar
  14. Golam, F., Farhana, N., Zain, M.F., Majid, N.A., Rahman, M.M., Kadir, M.A. 2011. Grain yield and associated traits of maize (Zea mays L.) genotypes in Malaysian tropical environment. African J. of Agric. Res. 6:6147–6154.Google Scholar
  15. Hegyi, Z., Pók, I., Berzy, T., Pintér, J., Marton, L.C. 2008. Comparison of the grain yield and quality potential of maize hybrids in different FAO maturity groups. Acta Agronomica Hungarica 56:161–167.CrossRefGoogle Scholar
  16. Heszky, L. 2008. Challenges of plant breeding early in 21th century. Hungarian Agricultural Research 17 (4):4–8.Google Scholar
  17. Idukut, L., Atalay, A.I., Kara, S.N., Kamalak, A. 2009. Effect of hybrid on starch, protein and yields of maize grain. J. of Animal and Veterinary Advances 8:1945–1947.Google Scholar
  18. Kralovánszky, U.P., Manninger, S. 1985. User quality requirements that should be considered in maize breeding. In: Maize Production Symposium. 11–15th February, Budapest, Hungary, p. 9.Google Scholar
  19. Lee, E., Ahmadzadeh, A., Tollenaar, M. 2005. Quantitative genetic analysis of physiological processes underlying maize grain yield. Crop. Sci. 45:981–987.CrossRefGoogle Scholar
  20. Li, Y., Wang, Y., Wei, M., Li, X., Fu, J. 2009. QTL identification of grain protein concentration and its genetic correlation with starch concentration and grain weight using two populations in maize (Zea mays L.). J. of Genetics 88:63.Google Scholar
  21. Liu, Y.X. 2007. Study on the genetic relationship between Alexho high-oil maize inbreds and normal maize inbreds belonging to different heterotic groups. Ms.D. Thesis, Henan Agricultural University, Zhengzhou, China.Google Scholar
  22. Liu, Y.Y., Dong, Y.B., Niu, S.Z., Cui, D.Q., Wang, Y.Z., Wei, M.G. 2008. QTL identification of kernel composition traits with popcorn using both F2:3 and BC2F2 populations developed from the same cross. J. Cereal Sci. 48:625–631.CrossRefGoogle Scholar
  23. Lunven, P. 1992. Maize in Human Nutrition. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 253–270.Google Scholar
  24. Nagy, J. 2009. A vetésidő hatása a kukorica-(Zea mays L.) hibridek terméshozamára és minőségére (The effect of sowing date on the yield and quality of maize (Zea mays L.) hybrids). Növénytermelés (Crop Production) 58:85–105. (in Hungarian with English summary)CrossRefGoogle Scholar
  25. Nastasic, A., Jockovic, D., Ivanovic, M., Stojakovic, M., Bocanski, J., Dalovic, I., Sreckov, Z. 2010. Genetic relationship between yield and yield components of maize. Genetika-Belgrade 42:529–534.CrossRefGoogle Scholar
  26. Orman, B.A., Schumann, R.A. 1991. Comparison of near-infrared spectroscopy calibration methods for the prediction of protein, oil and starch in maize grain. J. of Agricultural and Food Chemistry 39:883–886.CrossRefGoogle Scholar
  27. Parvez, A.S., Rather, A.G., Zahoor, D. 2007. Association of heterotic expression for grain yield and its component traits in maize (Zea mays L.). Int. J. of Agric. Res. 2:500–503.CrossRefGoogle Scholar
  28. Patel, C.G., Patel, D.B., Prajapati, N.D., Patel, M.D., Patel, K.R. 2010. Heterosis breeding in maize (Zea mays L.). Research on Crops 11:429–431.Google Scholar
  29. Pepó, P., Bódi, Z. 2006. Comparison of variability among irradiated and control inbred maize lines via morphological descriptions and some quantitative features. J. of Agric. Sci., Acta Agraria Debreceniensis 24:70–73.CrossRefGoogle Scholar
  30. Pham, D.Q., Szundy, T. 1991. Kukorica S2 családok és hibridjeik néhány terméselemének, valamint szemtermésének összefüggése (Correlations between some yield components and grain-yield of maize S2 families and their hybrids). Növénytermelés (Crop Production) 40:203–210. (in Hungarian with English abstract)Google Scholar
  31. Rodrigues, M.C., Chaves, L.J., Pacheco, C.A.P. 2006. Heterosis in crosses among white grain maize populations with high quality protein. Pesquisa Agropecuaria Brasileira 41:59–66.CrossRefGoogle Scholar
  32. Shull, G.H. 1908. The composition of a field of maize. Am. Breeders Assoc. Rep. 4:296–301.Google Scholar
  33. Singh, S.K., Johnson, L.A., Pollak, L.M., Hurburgh, C.R. 2001. Heterosis in compositional, physical, and wet milling properties of adapted x exotic corn crosses. Cereal Chem. 78:336–341.CrossRefGoogle Scholar
  34. Sipos, P., Ungai, D. 2008. Evaluation of the chemical composition of the maize kernel in 2007. Cereal Res. Commun. 36:495–498.Google Scholar
  35. Szűcs, I. 2002. Alkalmazott statisztika. A korrelációs együttható (Applied Statistics. Correlation Coefficient). Agroinform Kiadó, Budapest, Hungary, 315 pp. (in Hungarian)Google Scholar
  36. Taboada-Gaytan, O.R. 2007. Heterosis in compositional, physical, and wet-milling characteristics of hybrids from exotic introgressed by adapted inbred lines in corn. Ph.D. Dissertation, Iowa State University, Ames, IA, USA, pp. 9–11.Google Scholar
  37. Taboada-Gaytan, O., Pollak, L.M., Johnson, L.A., Fox, S.R., Montgomery, K.T. 2010. Physical, compositional, and wet milling characteristics of grain from crosses of corn inbreds with exotic and nonexotic background. Cereal Chem. 87:486–496.CrossRefGoogle Scholar
  38. Thokoza, L. 2005. Evaluation of the heterotic potential of sorghum (Sorghum bicolor (L.) Moench) adapted to the southern Africa region. MS Thesis, Texas A&M University, TX, USA, pp. 1–6.Google Scholar
  39. Tollenaar, M., Ahmadzadeh, A., Lee, E.A. 2004. Physiological basis of heterosis for grain yield. Crop Sci. 44:2086–2094.CrossRefGoogle Scholar
  40. Tóth, Sz., Bódi, Z. 2006. Maize gene bank developed by induced mutation for selection. J. of Agric. Sci., Acta Agraria Debreceniensis 19:45–49.CrossRefGoogle Scholar
  41. Vasal, S.K., Srinivasan, G., Gonzalez, F., Beck, D.L., Crossa, J. 1993. Heterosis and combining ability of CIMMYT’s quality protein maize germplasm, II. Subtropical. Crop Sci. 33:51–57.CrossRefGoogle Scholar
  42. Wang, Z.H., Wang, Y.B., Wang, Y.P., Zhang, X. 1998. Analysis of heterosis and heterosis relationships among grain quality characters in maize. J. of Maize Sciences 1998–03.
  43. Willmot, D.B., Dudley, J.W., Rocheford, T.R., Bari, A. 2006. Effect of random mating on marker-QTL associations for grain quality traits in the cross of Illinois High Oil × Illinois Low Oil. Maydica 51:187–199.Google Scholar
  44. Záborszky, S., Berzy, T. 1999. A hibridkukorica-(Zea mays L.) vetőmagfrakciók és terméselemek közötti összefüggések [Correlations between the seed fractions and the yield components of hybrid maize (Zea mays L.)]. Növénytermelés (Crop Production) 48:591–599. (in Hungarian with English summary)Google Scholar
  45. Zehr, B.E., Eckhoff, S.R., Singh, S.K., Keeling, P.L. 1995. Comparison of wet-milling properties among maize inbred lines and their hybrids. Cereal Chem. 72:491–497.Google Scholar
  46. Zhang, J., Lu, X.Q., Song, X.F., Yan, J.B., Song, T.M., Dai, J.R. 2008. Mapping quantitative trait loci for oil, starch, and protein contents in grain with high-oil maize by SSR markers. Euphytica 162:335–344.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • É. Erdei
    • 1
    Email author
  • H. Kovácsné Oskolás
    • 1
  • G. Tikász
    • 1
  • P. Pepó
    • 1
  1. 1.Centre for Agricultural and Applied Economic Sciences, Faculty of Agricultural and Food Sciences and Environmental Management, Institute of Crop SciencesUniversity of DebrecenDebrecenHungary

Personalised recommendations