Cereal Research Communications

, Volume 41, Issue 1, pp 1–22 | Cite as

Gene Discovery in Triticum Dicoccoides, the Direct Progenitor of Cultivated Wheats

  • J. H. PengEmail author
  • D. F. SunEmail author
  • Y. L. Peng
  • E. Nevo
Invited Review


Triticum dicoccoides, wild emmer wheat, is the direct progenitor of cultivated wheats, has the same genome formula as durum wheat, and has contributed two genomes to bread wheat. It harbors many useful genes, more than can be used for wheat improvement. These genes are associated with many agronomic traits, abiotic stress tolerances, biotic stress resistances, grain protein content and micronutrient mineral concentrations. In this review, we summarized the achievements regarding gene discovery, i.e. gene identification, mapping and cloning in wild emmer wheat. These genes, controlling important agronomic traits, disease resistance, drought tolerance, high protein content and micronutrient mineral content, should be very useful for improvement of wheat production and food nutrition. However, the majority of genetic resources in wild emmer remain untapped, demonstrating the need for further exploration and utilization for wheat breeding programs. The large number of molecular markers, genomics tools and efficient cloning techniques available for wheat will greatly accelerate the application of wild emmer germplasm to wheat improvement and ensure sustainability of global wheat production.


Triticum dicoccoide molecular marker agronomic trait biotic and abiotic stress tolerance gene mapping and cloning wheat improvement 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anikster, Y., Manisterski, J., Long, D.L., Leonard, K.J. 2005. Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Dis. 89:55–62.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Avivi, L. 1978. High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam, S. (ed.), Proc. 5th Intl. Wheat Genet Symp. Indian Society of Genetics and Plant Breeding, pp. 372–380.Google Scholar
  3. Avivi, L. 1979. Utilization of Triticum dicoccoides for the improvement of grain protein quantity and quality in cultivated wheats. Monogr. Genet. Agrar. 4:27–38.Google Scholar
  4. Bai, D., Knott, D.R. 1994. Genetic studies of leaf and stem rust resistance in six accessions of Triticum turgidum var. dicoccoides. Genome 37:405–409.PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ben-David, R., Xie, W., Peleg, Z., Saranga, Y., Dinoor, A., Fahima, T. 2010. Identification and mapping of PmG16, a powdery mildew resistance gene derived from wild emmer wheat. Theor. Appl. Genet. 121:499–510.PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bennet, F.A.G. 1984. Resistance to powdery mildew in wheat: A review of its use in agriculture and breeding programs. Plant Pathol. 33:279–300.CrossRefGoogle Scholar
  7. Blanco, A., Simeone, R., Gadaleta, A. 2006. Detection of QTLs for grain protein content in durum wheat. Theor. Appl. Genet. 112:1195–1204.PubMedCrossRefPubMedCentralGoogle Scholar
  8. Blanco, A., Gadaleta, A., Cenci, A., Carluccio, A.V., Abdelbacki, A.M.M., Simeone, R. 2008. Molecular mapping of the novel powdery mildew resistance gene Pm36 introgressed from Triticum turgidum var. dicoccoides in durum wheat. Theor. Appl. Genet. 117:135–142.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Börner, A., Korzun, V., Worland, A.J. 1998. Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248.CrossRefGoogle Scholar
  10. Buerstmayr, H., Stierschneider, M., Steiner, B., Lemmons, M., Griessen, M., Nevo, E., Fahima, T. 2003. Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130:17–23.CrossRefGoogle Scholar
  11. Cakmak, I., Ozkan, H., Braun, H.J., Welch, R.M., Romheld, V. 2000. Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr. Bull. 21:401–403.CrossRefGoogle Scholar
  12. Cakmak, I., Torun, A., Millet, E., Feldman, M., Fahima, T., Korol, A.B., Nevo, E., Braun, H.J., Ozkan, H. 2004. Triticum dicoccoides: An important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci. Plant Nutr. 50:1047–1054.CrossRefGoogle Scholar
  13. Chagué, V., Fahima, T., Dahan, T., Sun, G.L., Korol, A.B., Ronin, Y.I., Grama, A., Röder, S., Nevo, E. 1999. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42:1050–1056.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chatzav, M., Peleg, Z., Ozturk, L, Yazici, A., Fahima, T., Cakmak, I., Saranga, Y. 2010. Genetic diversity for grain nutrients in wild emmer wheat: Potential for wheat improvement. Ann. Bot. 105:1211–1220.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chee, P.W., Elias, E.M., Anderson, J.A., Kianian, S.F. 2001. Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci. 41:295–301.CrossRefGoogle Scholar
  16. Chen, X.M., Luo, Y.H., Xia, X.C., Xia, L.Q., Chen, X., Ren, Z.L., He, Z.H., Jia, J.Z. 2005. Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed. 124:225–228.CrossRefGoogle Scholar
  17. Chu, C.G., Xu, S.S., Faris, J.D., Nevo, E., Friesen, T.L. 2008. Seedling resistance to tan pot and Stagonospora nodorum leaf blotch in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Plant Dis. 92:1229–1236.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Cockram, J., Jones, H., Leigh, F.J., O’sullivan, D., Powell, W., Laurie, D.A., Greenland, A.J. 2007. Control of flowering time in temperate cereals: Genes, domestication, and sustainable productivity. J. Exper. Bot. 58:1231–1244.CrossRefGoogle Scholar
  19. Dadkhodaie, N.A., Karaoglou, H., Wellings, C.R., Park, R.F. 2011. Mapping genes Lr53 and Yr35 on the short arm of chromosome 6B of common wheat with microsatellite markers and studies of their association with Lr36. Theor. Appl. Genet. 122:479–487.PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dick, J.W., Youngs, V.L. 1988. Evaluation of durum wheat, semolina, and pasta in the United States. In: Fabriani, G., Lintas, C. (eds), Durum Wheat: Chemistry and Technology. American Association of Cereal Chemists, St. Paul, MN, USA, pp. 237–248.Google Scholar
  21. Distelfeld, A., Fahima, T. 2007. Wild emmer wheat as a source for high-grain protein genes: Map-based cloning of Gpc-B1. Israel J. Plant Sci. 55:297–306.CrossRefGoogle Scholar
  22. Distelfeld, A., Uauy, C., Olmos, S., Schlatter, A.R., Dubcovsky, J., Fahima, T. 2004. Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct. Integr. Genomics 4:59–66.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Distelfeld, A., Uauy, C., Fahima, T., Dubcovsky, J. 2006. Physical map of the wheat high-grain protein content gene Gpc-B1and development of a high-throughput molecular marker. New Phytol. 169:753–763.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Distelfeld, A., Cakmak, I., Peleg, Z., Ozturk, L., Yazici, A.M., Budak, H., Saranga, Y., Fahima, T. 2007. Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol. Plant 129:635–643.CrossRefGoogle Scholar
  25. Dunford, R.P., Griffiths, S., Christodoulou, V., Laurie, D.A. 2005. Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor. Appl. Genet. 110:925–931.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Elias, E.M., Steiger, K.D., Cantrell, R.G. 1996. Evaluation of lines derived from wild emmer chromosome substitutions II. Agronomic traits. Crop Sci. 36:228–233.CrossRefGoogle Scholar
  27. Ergen, N.Z., Thimmapuram, J., Bohnert, H.J., Budak, H. 2009. Transcriptome pathways unique to dehydration tolerant relatives of modern wheat. Funct. Integr. Genomics 9:377–396.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Faure, S., Higgins, J., Turner, A., Laurie, D.A. 2007. The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Feldman, M., Sears, E.R. 1981. The wild gene resources of wheat. Sci. Am. 244:102–112.CrossRefGoogle Scholar
  30. Feldman, M., Lupton, F.G.H., Miller, T.E. 1995. Wheats. Triticum spp. (Gramineae-Triticinae). In: Smartt, J., Simmonds, N.W. (eds), Evolution of Crop Plants. Longman Scientific & Technical Press, London, UK, pp. 184–192.Google Scholar
  31. Finney, K.F., Yamazaki, W.T., Youngs, V.L., Rubenthaler, G.L. 1987. Quality of hard, soft, and durum wheats. In: Heyne, E.G. (ed.), Wheat and Wheat Improvement. Agron. Monogr. 13, 2nd ed. ASA, CSSA, and SSSA, Madison, WI, USA, pp. 677–748.Google Scholar
  32. Fu, D., Uauy, C., Distelfeld, A., Blechl, A., Epstein, L., Chen, X., Sela, H., Fahima, T., Dubcovsky, J. 2009. A kinase-START gene confers temperature-dependent resistance to wheat stripe rust. Science 323:1357–1360.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Garvin, D.F., Stack, R.W., Hansen, J.M. 2009. Quantitative trait locus mapping of increased Fusarium head blight susceptibility associated with a wild emmer wheat chromosome. Pytopathol. 99:447–452.CrossRefGoogle Scholar
  34. Gerechter-Amitai, Z.K., Stubbs, R.W. 1970. A valuable source of yellow rust resistance in Israeli population of wild emmer Triticum dicoccoides Koern. Euphytica 19:12–21.CrossRefGoogle Scholar
  35. Gerechter-Amitai, Z.K., Grama, A. 1977. Use of alien genes in wheat breeding. Ann. Wheat Newslett. 23:57–58.Google Scholar
  36. Gerechter-Amitai, Z.K., Van Silfhout, C.H., Grama, A., Kleitman, F. 1989a. Yr15 — a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 43:187–190.CrossRefGoogle Scholar
  37. Gerechter-Amitai, Z.K., Grama, A., Van Silfhout, C.H., Kleitman, F. 1989b. Resistance to yellow rust in Triticum dicoccoides. II. Crosses with resistant dicoccoides sel. G25. Neth. J. Pl. Path. 95:79–83.CrossRefGoogle Scholar
  38. Gonzalez-Hernandez, J.L., Elias, E.M., Kianian, S.F. 2004. Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225.CrossRefGoogle Scholar
  39. Griffiths, S., Dunford, R.P., Coupland, G., Laurie, D.A. 2003. The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol. 131:1855–1867.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gustafson, P., Raskina, O., Ma, X., Nevo, E. 2009. Wheat evolution, domestication, and improvement. In: Carver, B.F. (ed.), Wheat: Science and Trade. Wiley-Blackwell, pp. 5–30. DOI: 10.1002/9780813818832.ch1.Google Scholar
  41. Hancock, J.F. 2005. Contributions of domesticated plant studies to our understanding of plant evolution. Ann. Bot. 96:953–963.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hedden, P. 2003. The genes of the green revolution. Trends Genet. 19:5–9.PubMedCrossRefPubMedCentralGoogle Scholar
  43. Hovmoller, M.S. 2007. Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheats. Plant Breed. 126:225–233.CrossRefGoogle Scholar
  44. Hua, W., Liu, Z., Zhu, J., Xie, C., Yang, T., Zhou, Y., Duan, X., Sun, Q., Liu, Z. 2009. Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 119:223–230.PubMedCrossRefPubMedCentralGoogle Scholar
  45. Hunger, R.M., Sherwood, J.L., Pennington, R.E., Carver, B.F., Nevo, E. 1992. Reaction of native populations of Triticum dicoccoides to wheat soilborne mosaic. In: Biological & Cultural Tests for Control of Plant Disease, Vol 7. APS Press, St. Paul, MN, USA.Google Scholar
  46. Husain, S., Munns, R., Condon, A.G. 2003. Effect of sodium exclusion trait on chlorophyll retention and growth of durum wheat in saline soil. Australian J. Agric. Res. 54:589–597.CrossRefGoogle Scholar
  47. Ji, X., Xie, C., Ni, Z., Yang, T., Nevo, E., Fahima, T., Liu, Z., Sun, Q. 2008. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica 159:385–390.CrossRefGoogle Scholar
  48. Joppa, L.R., Cantrell, R.G. 1990. Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci. 30:1059–1064.CrossRefGoogle Scholar
  49. Joppa, L.R., Hart, G.E., Hareland, G.A. 1997. Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci. 37:1586–1589.CrossRefGoogle Scholar
  50. Khanna-Chopra, R., Viswanathan, C. 1999. Evaluation of heat stress tolerance in irrigated environment of T. aestivum and related species. I. Stability in yield and yield components. Euphytica 106:169–180.CrossRefGoogle Scholar
  51. Klindworth, D.L., Hareland, G.A., Elias, E.M., Faris, J.D., Chao, S., Xu, S. 2009. Agronomic and quality characteristics of two new sets of Langdon durum-wild emmer wheat chromosome substitution lines. J. of Cereal Sci. 50:29–35.CrossRefGoogle Scholar
  52. Krugman, T., Chagué, V., Peleg, Z., Balzergue, S., Just, J., Korol, A.B., Nevo, E., Saranga, Y., Chalhoub, B., Fahima, T. 2010. Multilevel regulation and signaling processes associated with adaptation to terminal drought in wild emmer wheat. Funct. Integr. Genomics 10:167–186.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Krugman, T., Levy, O., Snape, J.W., Rubin, B., Korol, A.B., Nevo, E. 1997. Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor. Appl. Genet. 94:46–51.PubMedCrossRefPubMedCentralGoogle Scholar
  54. Krugman, T., Rubin, B., Levy, O., Snape, J.W., Nevo, E. 1995. RFLP mapping of chlortoluron resistance gene, Su1, in bread wheat Triticum aestivum and the wild wheat Triticum dicoccoides (Abstr). Annu. Wheat Newslett. 41:125.Google Scholar
  55. Kumar, S., Stack, R.W., Friesen, T.L., Faris, J.D. 2007. Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathol. 97:592–597.CrossRefGoogle Scholar
  56. Levy, A.A. 1987. Increase in grain protein percentage in high yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica 36:353–359.CrossRefGoogle Scholar
  57. Levy, A.A., Feldman, M. 1989. Location of genes for high grain protein percentage and other quantitative traits in wild wheat Triticum turgidum var. dicoccoides. Euphytica 41:113–122.CrossRefGoogle Scholar
  58. Li, G., Fang, T., Zhang, H., Xie, C., Li, H., Yang, T., Nevo, E., Fahima, T., Sun, Q., Liu, Z. 2009. Molecular identification of a new powdery mildew resistance gene Pm41 on chromosome 3BL derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 119:531–539.PubMedCrossRefPubMedCentralGoogle Scholar
  59. Li, X.H., Wang, A.L., Xiao, Y.H., Yan, Y.M., He, Z.H., Appels, R., Ma, W.J., Hsam, S.L.K., Zeller, F.J. 2007. Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica 159:181–190.CrossRefGoogle Scholar
  60. Liu, Z.Y., Sun, Q.X., Ni, Z.F., Nevo, E., Sun, Q.X., Ni, Z.F., Nevo, E., Yang, T.M. 2002. Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29.CrossRefGoogle Scholar
  61. Lucas, S., Dogan, E., Budak, H. 2011b. TMPIT1 from wild emmer wheat: First characterisation of a stress-inducible integral membrane protein. Gene 483:22–28.PubMedCrossRefPubMedCentralGoogle Scholar
  62. Lucas, S., Durmaz, E., Akpénar, B.A., Budak, H. 2011a. The drought response displayed by a DRE-binding protein from Triticum dicoccoides. Plant Physiol. Biochem. 49:346–351.PubMedCrossRefPubMedCentralGoogle Scholar
  63. Luo, M.C., Yang, Z.L., Dvorak, J. 2000. The Q locus of Iranian and European spelt wheat. Theor. Appl. Genet. 100:602–606.Google Scholar
  64. Marais, G.F., Pretorius, Z.A., Wellings, C.R., McCallum, B., Marais, A.S. 2005. Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123.CrossRefGoogle Scholar
  65. McIntosh, R.A. 1998. Breeding wheat for resistance to biotic stress. Euphytica 100:19–34.CrossRefGoogle Scholar
  66. McIntosh, R.A., Silk, J., The, T.T. 1996. Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yr15 for resistance to stripe rust. Euphytica 89:395–399.Google Scholar
  67. McIntosh, R.A., Devos, K.M., Dubcovsky, J., Rogers, W.J., Morris, C.F., Appels, R., Somers, D.J., Anderson, O.A. 2007. Catalogue of gene symbols for wheat: 2007 supplement.
  68. Meidaner, T. 1997. Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed. 116:201–220.CrossRefGoogle Scholar
  69. Mesfin, A., Frohberg, R.C., Anderson, J.A. 1999. RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci. 39:508–513.CrossRefGoogle Scholar
  70. Mesterhazy, A. 1997. Breeding for resistance to FHB in wheat. In: Duben, H.J. et al. (eds), Fusarium Head Scab: Global Status and Future Prospects. CIMMYT, Mexico, D.F., Mexico, pp. 79–85.Google Scholar
  71. Miller, J.D., Stack, R.W., Joppa, L.R. 1998. Evaluation of Triticum turgidum L. var. dicoccoides for resistance to Fusarium head blight and stem rust. In: Slinkard, A.E. (ed.), Proc. 9th Intl. Wheat Genet. Symp., Vol. 3. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp. 292–293.Google Scholar
  72. Mohler, V., Zeller, F.J., Wenzel, G., Hsam, S.L.K. 2005. Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides -derived wheat line Zecoi-1. Euphytica 142:161–167.CrossRefGoogle Scholar
  73. Moseman, J.G., Nevo, E., El-Morshidy, M.A., Zohary, D. 1984. Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica 33:41–47.CrossRefGoogle Scholar
  74. Moseman, J.G., Nevo, E., Gerechter-Amitai, Z.K., El-Morshidy, M.A., Zohary, D. 1985. Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci. 25:262–265.CrossRefGoogle Scholar
  75. Nevo, E. 1993. Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: news and views (Abstract). In: Li, Z.S., Xin, Z.Y. (eds), Proc. 8th Intl. Wheat Genet Symp. China Agricultural Scientech Press, Beijing, China, p. 3.Google Scholar
  76. Nevo, E. 2001. Evolution of genome-phenome diversity under environmental stress. Proc. Natl. Acad. Sci. USA. 98:6233–6240.PubMedCrossRefPubMedCentralGoogle Scholar
  77. Nevo, E. 2004. Population genetic structure of wild barley and wheat in the near east fertile crescent: Regional and local adaptive patterns. In: Gupta, P.K., Varshney, R.K. (eds), Cereal Genomics, Chapter 6, pp. 135–163.Google Scholar
  78. Nevo, E., Beiles, A. 1989. Genetic diversity of wild emmer wheat in Israel and Turkey. Theor. Appl. Genet. 77:421–455.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Nevo, E., Beiles, A. 1992. Amino-acid resources in the wild progenitor of wheats, Triticum dicoccoides in Israel: polymorphisms and predictability by ecology and isozymes. Plant Breed. 108:190–201.CrossRefGoogle Scholar
  80. Nevo, E., Chen, G. 2010. Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ. 33:670–685.PubMedCrossRefPubMedCentralGoogle Scholar
  81. Nevo, E., Payne, P.I. 1987. Wheat storage proteins: Diversity of HMW glutenin subunits in wild emmer from Israel. I. Geographical patterns and ecological predictability. Theor. Appl. Genet. 74:827–836.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Nevo, E., Gerechter-Amitai, Z., Beiles, A. 1991. Resistance of wild emmer wheat to stem rust: Ecological, pathological and allozyme associations. Euphytica 53:121–130.CrossRefGoogle Scholar
  83. Nevo, E., Gorham, J., Beiles, A. 1992. Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J. Exp. Bot. 43:511–518.CrossRefGoogle Scholar
  84. Nevo, E., Krugman, T., Beiles, A. 1993. Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed. 110:338–341.CrossRefGoogle Scholar
  85. Nevo, E., Gerechter-Amitai, Z., Beiles, A., Golenberg, E.M. 1986a. Resistance of wild wheat to stripe rust: Predictive method by ecology and allozyme genotypes. Pl. Syst. Evol. 153:13–30.CrossRefGoogle Scholar
  86. Nevo, E., Grama, A., Beiles, A., Golenberg, E.M. 1986b. Resources of high-protein genotypes in wild wheat, Triticum dicoccoides in Israel: Predictive method by ecology and allozyme markers. Genetica 68:215–227.CrossRefGoogle Scholar
  87. Nevo, E., Korol, A.B., Beiles, A., Fahima, T. 2002. Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  88. Nevo, E., Moseman, J.G., Beiles, A., Zohary, D. 1985. Patterns of resistance of Israeli wild emmer wheat to pathogens I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica 67:209–222.CrossRefGoogle Scholar
  89. Nevo, E., Fu, Y.B., Pavlicek, T., Khalifa, S., Tavasi, M., Beiles, A. 2012. Evolution of wild cereals during 28 years of global warming in Israel. Proc. Natl. Acad. Sci. USA 109:3412–3415.PubMedCrossRefPubMedCentralGoogle Scholar
  90. Oliver, R.E., Stack, R.W., Miller, J.D., Cai, X. 2007. Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci. 47:893–899.CrossRefGoogle Scholar
  91. Olmos, S., Distelfeld, A., Chicaiza, O., Schlatter, A.R., Fahima, T., Echenique, V., Dubcovsky, J. 2003. Precise mapping of a locus affecting grain protein content in durum wheat. Theor. Appl. Genet. 107:1243–1251.PubMedCrossRefPubMedCentralGoogle Scholar
  92. Otto, C.D., Kianian, S.F., Elias, E.M., Stack, R.W., Joppa, L.R. 2002. Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol. Biol. 48:625–632.PubMedCrossRefPubMedCentralGoogle Scholar
  93. Pagnotta, M.A., Nevo, E., Beiles, A., Porceddu, E. 1995. Wheat storage proteins: Glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. 2. DNA diversity detected by PCR. Theor. Appl. Genet. 91:409–414.PubMedCrossRefPubMedCentralGoogle Scholar
  94. Peleg, Z., Fahima, T., Abbo, S., Krugman, T., Nevo, E., Yakir, D., Saranga, Y. 2005. Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ. 28:176–191.CrossRefGoogle Scholar
  95. Peleg, Z., Fahima, T., Krugman, T., Abbo, S., Yakir, D., Korol, A.B., Saranga, Y. 2009b. Genomic dissection of drought resistance in durum wheat × wild emmer wheat recombinant inbred line population. Plant Cell Environ. 32:758–779.PubMedCrossRefPubMedCentralGoogle Scholar
  96. Peleg, Z., Cakmak, I., Ozturk, L., Yazici, A., Yan, J., Budak, H., Korol, A.B., Fahima, T., Saranga, Y. 2009a. Quantitative trait loci conferring grain mineral nutrient concentrations in durum wheat × wild emmer wheat RIL population. Theor. Appl. Genet. 119:353–369.PubMedCrossRefPubMedCentralGoogle Scholar
  97. Peleg, Z., Fahima, T., Korol, A.B., Abbo, S., Krugman, T., Avneri, A., Röder, M.S., Nevo, E., Yakir, D., Saranga, Y. 2006. Genomic dissection of drought resistance in wild emmer wheat × durum wheat population (Abstract). In: Plant & Animal Genomes XIV Conference. San Diego, CA, USA, p. 293.Google Scholar
  98. Peng, J.H., Sun, D.F., Nevo, E. 2011a. Domestication evolution, genetics and genomics in wheat. Mol. Breed. 28:281–301.CrossRefGoogle Scholar
  99. Peng, J.H., Sun, D.F., Nevo, E. 2011b. Wild emmer wheat, Triticum dicoccoides, occupies a pivotal position in wheat domestication process. Australian J. Crop Sci. 5:1127–1143.Google Scholar
  100. Peng, J.H., Fahima, T., Röder, M.S., Li, Y.C., Grama, A., Nevo, E. 2000c. Microsatellite high-density mapping of stripe-rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in F2 generation in wild emmer wheat. New Phytol. 146:141–154.CrossRefGoogle Scholar
  101. Peng, J.H., Korol, A.B., Fahima, T., Röder, M.S., Ronin, Y.I., Li, Y.C., Nevo, E. 2000a. Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: Genome-Wide coverage, massive negative interference, and putative quasi-linkage. Genome Res. 10:1509–1531.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Peng, J.H., Ronin, Y., Fahima, T., Röder, M.S., Li, Y.C., Nevo, E., Korol, A. 2003. Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc. Natl. Acad. Sci. USA 100:2489–2494.PubMedCrossRefPubMedCentralGoogle Scholar
  103. Peng, J.H., Fahima, T., Röder, M.S., Huang, Q.Y., Dahan, A., Li, Y.C., Grama, A., Nevo, E. 2000b. High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:199–210.CrossRefGoogle Scholar
  104. Peng, J.H., Fahima, T., Röder, M.S., Li, Y.C., Dahan, A., Grama, A., Ronin, Y.I., Korol, A.B., Nevo, E. 1999. Microsatellite tagging of stripe rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor. Appl. Genet. 98:862–872.CrossRefGoogle Scholar
  105. Qi, P.F., Yue, Y.W., Long, H., Wei, Y.M., Yan, Z.H., Zheng, Y.L. 2006. Molecular characterization of a-gliadin genes from wild emmer wheat (Triticum dicoccoides). DNA Seq. 17:415–421.PubMedCrossRefPubMedCentralGoogle Scholar
  106. Reader, S.M., Miller, T.E. 1991. The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60.CrossRefGoogle Scholar
  107. Röder, M.S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M.H., Leroy, P., Ganal, M.W. 1998. A microsatellite map of wheat. Genetics 149:2007–2023.PubMedPubMedCentralGoogle Scholar
  108. Roelfes, A.P., Singh, R.P., Saari, E.E. 1992. Rust Diseases of Wheat: Concepts and Methods of Disease Management. CIMMYT, Mexico, D.F., Mexico, 81 pp.Google Scholar
  109. Rong, J.K., Millet, E., Manisterski, J., Feldman, M. 2000. A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126.CrossRefGoogle Scholar
  110. Rossini, L., Vecchietti, A., Stein, N., Franzago, S., Salamini, F., Pozzi, C. 2006. Candidate genes for barley mutants involved in plant architecture: An in silico approach. Theor. Appl. Genet. 112:1073–1085.PubMedCrossRefPubMedCentralGoogle Scholar
  111. Singh, P.K., Gonzalez-Hernandez, J.L., Mergoum, M., Ali, S., Adhikari, T.B., Kianian, S.F., Elias, E.M., Hughes, G.R. 2006. Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathol. 96:885–889.CrossRefGoogle Scholar
  112. Singh, P.K., Mergoum, M., Adhikari, T.B., Kianian, S.F., Elias, E.M. 2007. Chromosomal location of genes for seedling resistance to tan spot and Stagonospora nodorum blotch in tetraploid wheat. Euphytica 155:27–34.CrossRefGoogle Scholar
  113. Snape, J.W., Leckie, D., Parker, B.B., Nevo, E. 1991. The genetical analysis and exploitation of differential responses to herbicides in crop species. In: Casley, J.C., Cussans, G.W., Atkin, R.K. (eds), Herbicide Resistance in Weeds and Crops. Butterworth-Heinemann, Oxford, UK, pp. 305–317.CrossRefGoogle Scholar
  114. Stack, R.W., Elias, E.M., Fetch, J., Miller, J.D., Joppa, L.R. 2002. Fusarium head blight reaction of Langdon durum- Triticum dicoccoides chromosome substitution lines. Crop Sci. 42:637–642.CrossRefGoogle Scholar
  115. Sun, G.L., Fahima, T., Korol, A.B., Turpeinen, T., Grama, A., Ronin, Y.I., Nevo, E. 1997. Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides. Theor. Appl. Genet. 95:622–628.CrossRefGoogle Scholar
  116. The, T.T., Nevo, E., McIntosh, R.A. 1993. Response of Israeli wild emmer to selected Australian pathotypes of Puccinia species. Euphytica 71:75–81.CrossRefGoogle Scholar
  117. Uauy, C., Brevis, J.C., Dubcovsky, J. 2006a. The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J. Exp. Bot. 57:2785–2794.PubMedCrossRefPubMedCentralGoogle Scholar
  118. Uauy, C., Distelfeld, A., Fahima, T., Blechl, A., Dubcovsky, J. 2006b. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Uauy, C., Brevis, J.C., Chen, X.M., Khan, I., Jackson, L., Chicaiza, O., Distelfeld, A., Fahima, T., Dubcovsky, J. 2005. High temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor. Appl. Genet. 122:97–105.CrossRefGoogle Scholar
  120. Van Silfhout, C.H., Kema, G.H.J., Gerechter-Amitai, Z.K. 1989b. Major genes for resistance to yellow rust in wild emmer wheat. In: Van Silfhout, C.H., Identification and characterization of resistance to yellow rust and powdery mildew in wild emmer wheat and their transfer to bread wheat. Ph.D. Thesis. Research Institute for Plant Protection, Wageningen, The Netherlands, pp. 5–15.Google Scholar
  121. Van Silfhout, C.H., Grama, A., Gerechter-Amitai, Z.K., Kleitman, F. 1989a. Resistance to yellow rust in Triticum dicoccoides. I. Crosses with susceptible Triticum durum. Neth. J. Pl. Path. 95:73–78.CrossRefGoogle Scholar
  122. Wang, J.R., Wei, Y.M., Long, X.Y., Yan, Z.H., Nevo, E., Baum, B.R., Zheng, Y.L. 2008. Molecular evolution of dimeric a-amylase inhibitor genes in wild emmer wheat and its ecological association. BMC Evol. Biol. 8:91. doi: Scholar
  123. Worland, A. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica 89:49–57.CrossRefGoogle Scholar
  124. Xie, C.J., Sun, Q.X., Ni, Z.F., Yang, T., Nevo, E., Fahima, T. 2003. Chromosomal location of a Triticum dicoccoides -derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor. Appl. Genet. 106:341–345.PubMedCrossRefPubMedCentralGoogle Scholar
  125. Xie, W.L. 2006. Identification and molecular mapping of powdery mildew resistance genes derived from wild relatives of wheat. Ph.D. Thesis. University of Haifa, Israel.Google Scholar
  126. Xie, W.L., Nevo, E. 2008. Wild emmer: Genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614.CrossRefGoogle Scholar
  127. Xu, S.S., Khan, K., Klindworth, D.L., Faris, J.D., Nygard, G. 2004. Chromosomal location of genes for novel glutenins and gliadins in emmer wheat (Triticum turgidum L. var. dicoccoides). Theor. Appl. Genet. 108:1221–1228.PubMedCrossRefPubMedCentralGoogle Scholar
  128. Yan, L., Loukoianov, A., Tranquilli, G., Helguera, M., Fahima, T., Dubcovsky, J. 2003. Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. USA 100:6263–6268.PubMedCrossRefPubMedCentralGoogle Scholar
  129. Zakari, A., McIntosh, R.A., Hovmoller, M.S., Wellings, C.R., Shariflou, M.R., Hayden, M., Bariana, H.S. 2003. Recombination of Yr15 and Yr24 in chromosome 1BS. In: Pogna, N.E., Romano, M., Pogna, E.A., Galterio, G. (eds), Proc. 10th Intl. Wheat Genet. Symp., Vol. 1. Instituto Sperimentale per la Cerealicoltura, Rome, Italy, pp. 417–420.Google Scholar
  130. Zhang, H., Guan, H., Li, J., Zhu, J., Xie, C., Zhou, Y., Duan, X., Yang, T., Sun, Q., Liu, Z. 2010. Genetic and comparative genomics mapping reveals that a powdery mildew resistance gene Ml3D232 originating from wild emmer co-segregates with an NBS-LRR analog in common wheat (Triticum aestivum L.). Theor. Appl. Genet. 121:1613–1621.PubMedCrossRefPubMedCentralGoogle Scholar
  131. Zohary, D., Hopf, M. 2000. Domestication of Plants in the Old World. Oxford University Press, Oxford, UK.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
  2. 2.Institute of Plant ProtectionSichuan Academy of Agricultural SciencesChengduChina
  3. 3.International Graduate Center of Evolution, Institute of EvolutionUniversity of HaifaHaifaIsrael
  4. 4.Department of Soil and Crop SciencesColorado State UniversityFort CollinsUSA

Personalised recommendations