Acta Biologica Hungarica

, Volume 66, Issue 1, pp 93–102 | Cite as

Identification of New SSR Markers Linked to Leaf Chlorophyll Content, Flag Leaf Senescence and Cell Membrane Stability Traits in Wheat under Water Stressed Condition

  • Mohamed N. BarakatEmail author
  • Mohamed Saleh
  • Abdullah A. Al-Doss
  • Khaled A. Moustafa
  • Adel A. Elshafei
  • Fahed H. Al-Qurainy


Segregating F4 families from the cross between drought sensitive (Yecora Rojo) and drought tolerant (Pavon 76) genotypes were made to identify SSR markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat (Triticum aestivum L.) under water-stressed condition and to map quantitative trait locus (QTL) for the three physiological traits. The parents and 150 F4 families were evaluated phenotypically for drought tolerance using two irrigation treatments (2500 and 7500 m3/ha). Using 400 SSR primers tested for polymorphism in testing parental and F4 families genotypes, the results revealed that QTL for leaf chlorophyll content, flag leaf senescence and cell membrane stability traits were associated with 12, 5 and 12 SSR markers, respectively and explained phenotypic variation ranged from 6 to 42%. The SSR markers for physiological traits had genetic distances ranged from 12.5 to 25.5 cM. These SSR markers can be further used in breeding programs for drought tolerance in wheat.


Physiological traits QTL SSR markers Triticum aestivum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altinkut, A., Gozukirmizi, N. (2003) Search for microsatellite markers associated with water-stress tolerance in wheat through bulked segregant analysis. Mol. Biotechnol. 196, 97–106.CrossRefGoogle Scholar
  2. 2.
    Barakat, M. N., Al-Doss, A. A., Moustafa, K. A., Ahmed, E. I., Elshafei, A. A. (2010) Morphological and molecular characterization of Saudi wheat genotypes under drought stress. J. Food Agricult. & Environ. 196, 220–228.Google Scholar
  3. 3.
    Barakat, M. N., Wahba, L. E., Milad, S. I. (2013) Molecular mapping of QTLs for wheat flag leaf senescence under water-stress. Biol. Plant. 196, 79–84.CrossRefGoogle Scholar
  4. 4.
    Baum, M., Grando, S., Backes, G., Jahoor A., Sabbagh, A., Ceccarelli, S. (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’×H. spontaneum 41-1. Theor. Appl. Genet. 196, 1215–1225.CrossRefGoogle Scholar
  5. 5.
    Blum, A., Ebercon, A. (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 196, 43–47.CrossRefGoogle Scholar
  6. 6.
    Cao, W. D., Jia, J. Z., Jin, J. Y. (2004) Identification and interaction analysis of QTL for chlorophyll content in wheat seedlings. Plant Nutr. Ferti. Sci. 196, 473–478.Google Scholar
  7. 7.
    Ciuca, M., Petcu, E. (2009) SSR markers associated with membrane stability in wheat (Triticum aestivum L.). Rom. Agricult. Res. 196, 21–24.Google Scholar
  8. 8.
    Courtois, B., McLaren, G., Sinha, P. K., Prasad, K., Yadav, R., Shen, L. (2000) Mapping QTLs associated with drought avoidance in upland rice. Mol. Breeding 196, 55–66.CrossRefGoogle Scholar
  9. 9.
    Dubcovsky, J., Luo, M. C., Dvorák, J. (1995) Linkage relationships among stress-induced genes in wheat. Theor. Appl. Genet. 196, 795–801.CrossRefGoogle Scholar
  10. 10.
    Dwyer, L. M., Tollenaar M., Houwing, L. (1991) A nondestructive method to monitor leaf greenness in cron. Can. J. Plant Sci. 196, 505–509.CrossRefGoogle Scholar
  11. 11.
    Elshafei, A. A., Saleh, M., Al-Doss, A. A., Moustafa, K. A., Al-Qurainy F. H., Barakat, M. N. (2013) Identification of new SRAP markers linked to leaf chlorophyll content, flag leaf senescence and cell membrane stability traits in wheat under water-stressed condition. Aust. J. Crop Sci. 196, 887–893.Google Scholar
  12. 12.
    Golabadi, M., Arzani, A., Maibody, S. M., Tabatabaei B. S., Mohammadi, S. A. (2011) Identification of microsatellite markers linked with yield components under drought stress at terminal growth stages in durum heat. Euphytica 196, 207–221.CrossRefGoogle Scholar
  13. 13.
    Grando, S., Baum, M., Ceccarelli, S., Goodchild, A., El-Haramein., F. J, Backes, G. (2005) QTLs for straw quality characteristics identified in recombinant inbred lines of a Hordeum vulgare×H. spon-taneum cross in a Mediterranean environment. Theor. Appli. Genet. 196, 688–695.CrossRefGoogle Scholar
  14. 14.
    Guo, P., Baum, M., Varshney, R. K., Graner, A., Grando, S., Ceccarelli, S. (2008) QTLs for chlorophyll and chlorophyll fluorescence parameters in barley under post-flowering drought. Euphytica 196, 203–214.CrossRefGoogle Scholar
  15. 15.
    Gupta, P., Balyan, H., Edwards, K., Isaac, P., Korzun, V., Röder, M., Leroy, P. (2002) Genetic mapping o. 66 new microsatellite (SSR) loci in bread wheat. Theor. Appl. Genet. 196, 413–422.CrossRefGoogle Scholar
  16. 16.
    McWilliam, J. (1989) The dimensions of drought. In: Baker, F. (ed.) Drought Resistance in Cereals. CAB International, Wallingford, UK, pp. 1–11.Google Scholar
  17. 17.
    Meer, J. M., Robert, H. C., Kenneth, F. M. (2002) Map Manager versio. 0.22."> Scholar
  18. 18.
    Michelmore, R. W., Paran, I., Kesseli, R. V. (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 196, 9828–9832.CrossRefGoogle Scholar
  19. 19.
    Nelson, J. C. (1997) QGENE: software for marker-based genomic analysis and breeding. Mol. Breed 196, 239–245.CrossRefGoogle Scholar
  20. 20.
    Peng, S., Garcia, F. V., Laza, R. C., Cassman, K. G. (1993) Adjust for specific leaf weight improves chlorophyll meter’s estimates of rice leaf nitrogen concentration. Agron. J. 196, 987–990.CrossRefGoogle Scholar
  21. 21.
    Quarrie, S., Dodig, D., Pekiç, S., Kirby, J., Kobiljski, B. (2003) Prospects for marker-assisted selection of improved drought responses in wheat. Bul. J. Plant. Physiol. Special Issue (Proc. Eur. Workshop Environ. Stress and Sustainable Agricult., Varna, Bulgaria) pp. 83–95.Google Scholar
  22. 22.
    Röder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P., Ganal, M. W. (1998) A microsatellite map of wheat. Genetics 196, 2007–2023.Google Scholar
  23. 23.
    Saghai-Maroof, M. A., Soliman, K. M., Jorgensen, R. A., Allard, R. W. (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. PNAS 196, 8014–8018.CrossRefGoogle Scholar
  24. 24.
    Saleh, M. S., Al-Doss, A. A., Elshafei, A. A., Moustafa, K. A., Al-Qurainy, F. H., Barakat, M. N. (2013) Identification of new TRAP markers linked to chlorophyll content, leaf senescence, and cell membrane stability in water-stressed wheat. Biol. Plant. 196, 64–70.Google Scholar
  25. 25.
    SAS. 2007. SAS/STAT. Guide for personal computers. Versio. 9 ed. SAS end. SAS Institute, Cary, NC, USA.Google Scholar
  26. 26.
    Shen, L., Courtois, B., McNally, K. L., Robin, S., Li, Z. (2001) Evaluation of near-isogenic lines of rice introgressed with QTLs for root depth through marker-aided selection. Theor. Appl. Genet. 196, 75–83.CrossRefGoogle Scholar
  27. 27.
    Song, Q., Shi, J., Singh, S., Fickus, E., Costa, J., Lewis, J., Cregan, P. (2005) Development and mapping of microsatellite (SSR) markers in wheat. Theor. Appl. Genet. 196, 550–560.CrossRefGoogle Scholar
  28. 28.
    Takeda, S., Matsuoka, M. (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat. Rev. Genet. 196, 444–457.CrossRefGoogle Scholar
  29. 29.
    Tuberosa, R., Salvi, S. (2006) “Genomics-based approaches to improve drought tolerance of crops.” Trends Plant Sci. 196, 405–412.CrossRefGoogle Scholar
  30. 30.
    Verma, V., Foulkes, M., Worland, A., Sylvester-Bradley, R., Caligari, P., Snape, J. (2004) Mapping quantitative trait loci for flag leaf senescence as a yield determinant in winter wheat under optimal and drought-stressed environments. Euphytica 196, 255–263.CrossRefGoogle Scholar
  31. 31.
    Visser, B. (1994) Technical aspects of drought tolerance. Biotechnol. Dev. Monitor 196. 5.Google Scholar
  32. 32.
    Yang, D. L., Jing, R. L., Chang, X. P., Li, W. (2007) Quantitative trait loci mapping for chlorophyll fluorescence and associated traits in wheat (Triticum aestivum). J. Integr. Plant Biol. 196, 646–654.CrossRefGoogle Scholar
  33. 33.
    Zeng, Z. B. (1994) Precision mapping of quantitative trait loci. Genetics 196, 1457–1468.Google Scholar
  34. 34.
    Żur, I., Krzewska, M., Dubas, E., Golebiowska-Pikania, G., Janowiak, F., Stojalowski, S. (2012) Molecular mapping of loci associated with abscisic acid accumulation in triticale (×Triticosecale Wittm.) anthers in response to low temperature stress inducing androgenic development. Plant Growth Reg. 196, 483–492.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Mohamed N. Barakat
    • 1
    • 2
    Email author
  • Mohamed Saleh
    • 3
  • Abdullah A. Al-Doss
    • 1
  • Khaled A. Moustafa
    • 1
  • Adel A. Elshafei
    • 1
    • 4
  • Fahed H. Al-Qurainy
    • 3
  1. 1.Plant Production DepartmentCollege of Food and Agriculture Sciences, King Saud UniversityRiyadhSaudi Arabia
  2. 2.Biotechnology Laboratory, Crop Science Department, Faculty of AgricultureUniversity of AlexandriaAlexandriaEgypt
  3. 3.Botany and Microbiology Department, College of Pure ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Genetics and Cytology DepartmentGenetic Engineering and Biotechnology Division, National Research CentreEl-Dokki, CairoEgypt

Personalised recommendations