Acta Biologica Hungarica

, Volume 66, Issue 1, pp 80–92 | Cite as

Chromium Translocation, Concentration and its Phytotoxic Impacts in in Vivo Grown Seedlings of Sesbania Sesban L. Merrill

  • Monalisa MohantyEmail author
  • Chinmay Pradhan
  • Hemanta Kumar Patra


The present in vivo pot culture study showed hexavalent chromium (Cr+6) induced phytotoxic impacts and its translocation potential i. 21 days old sesban (Sesbania sesban L. Merrill.) seedlings. Cr+6 showed significant growth retardation i. 21 days old sesban (Sesbania sesban L. Merrill.) seedlings. Germination of seeds a. 10,000 mg L-1 of Cr+6 exhibi. 80% inhibition in germination. Seedling survival wa. 67% afte. 7 days of seedling exposure t. 300 mg kg-1 of Cr+6. Shoot phytotoxicity was enhanced fro. 6% t. 31% with elevated supply of Cr+6 fro. 10 mg kg-1 t. 300 mg kg-1. Elevated supply of Cr+6 exhibited increasing and decreasing trends in % phytotoxicity and seedling tolerance index, respectively. Elevated supply of chromium showed decreased chlorophyll and catalase activities. Peroxidase activities in roots and leaves were significantly higher at increased supply of Cr+6. Cr bioconcentration in roots was nearl. 10 times more than stems whereas leaves showed nearly double accumulation than stems. Tissue specific chromium bioaccumulation showe. 53 an. 12 times more in roots and shoots respectively a. 300 mg kg-1 Cr+6 than control. The present study reveals potential of sesban for effective Cr translocation from roots to shoots as evident from their translocation factor and Total Accumulation Rate values.


Antioxidative enzymes bioaccumulation chromium TF-TAR TI 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allen, O. N., Allen, E. K. (1981) The Leguminosae. A Source Book of Characteristics, Uses, and Nodulation. The University of Wisconsin Press, Madison, USA.Google Scholar
  2. 2.
    APAT (2002) Guida tecnica sui metodi di analisi per il suolo e i siti contaminati, utilizzo di indicatori ecotossicologici e biologici, RTI CTN_SSC 2.Google Scholar
  3. 3.
    Arnon, D. I. (1949) Copper enzymes in chloroplast polyphenol oxidase in Beta vulgaris. Plant Physiol. 196, 1–15.CrossRefGoogle Scholar
  4. 4.
    Barcelo, J., Poschenrieder, C., Vazquez, M. D., Gunse, B., Vernet, J. P. (1993) Beneficial and toxic effects of chromium in plants: solution culture, pot and field studies. Studies in Environmental Science No. 55, Paper Presented at th. 5th International Conference on Environmental Contamination, Morges, Switzerland.Google Scholar
  5. 5.
    Bates, L. S., Waldren, R. P., Teare, I. D. (1973) Rapid determination of free proline for water stress studies. Plant Soil 196, 205–207.CrossRefGoogle Scholar
  6. 6.
    Bera, A. K., Kanta, A. K., Bokaria, K. (1999) Effect of tannery effluent on seed germination, seedling growth and chloroplast pigment content in mungbean (Vigna radiata L. Wilczek). Environ. Ecol. 196, 958–961.Google Scholar
  7. 7.
    Bonnet, M., Camares, O., Veisseire, P. (2000) Effect of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). J. Exp. Bot. (51346), 945–953.PubMedGoogle Scholar
  8. 8.
    Chance, B., Maehly, A. C. (1955) Assay of catalase and peroxidase. Meth. Enzymol. 196, 764–775.CrossRefGoogle Scholar
  9. 9.
    Datta, J. K., Bandhyopadhyay, A., Banerjee, A., Mondal, N. K. (2011) Phytotoxic effect of chromium on the germination, seedling growth of some wheat (Triticum aestivum L.) cultivars under laboratory condition. J. Agr. Tech. (72), 395–402.Google Scholar
  10. 10.
    Ghosh, M., Singh, S. P. (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Env. Poll. 196, 365–371.CrossRefGoogle Scholar
  11. 11.
    Khan, M. H., Singh, L. B. K., Panda, S. K. (2002) Changes in antioxidant levels in Oryza sativa L. roots subjected to NaCl salinity stress. Biol. Plant. (454), 625–627.CrossRefGoogle Scholar
  12. 12.
    Klieman, J. D., Cogliatts, D. H. (1998) Chromium removal from aqueous solution by different plant species. Env. Tech. 196, 1127–1132.CrossRefGoogle Scholar
  13. 13.
    Kösesakal, T., Yüzbasioglu, E., Kaplan, E., Baris, C., Yüzbasioglu, S., Belivermis, M., Cevahir-Öz, G., Ünal, M. (2011) Uptake, accumulation and some biochemical responses in Raphanus sativus L. to zinc stress. Afr. J. Biotech. (1032), 5993–6000.Google Scholar
  14. 14.
    Labra, M., Gianazza, E., Waitt, R., Eberini, I., Sozzi, A., Regondi, S., Grassi, F., Agradi, E. (2006) Zea mays L. protein changes in response to potassium dichromate treatments. Chemosphere 196, 1234–1244.Google Scholar
  15. 15.
    Lee, J. (2003) Characterization of Heavy Metal Tolerance and Accumulation in Indian Mustard Over Expressing Bacterial ψ-ECS Gene. Scholar
  16. 16.
    Liu, D. H., Zou, J. H., Wang, M., Jiang, W. S. (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defense system and photosynthesis in Amaranthus viridis L. Bioresource Tech. 196, 2628–2636.CrossRefGoogle Scholar
  17. 17.
    Maslenkova, L. T., Miteva, T. S., Popova, L. P. (1992) Changes in polypeptide patterns of barley seedlings exposed to Jasmonic acid and salinity. Pl. Physiol. 196, 700–707.CrossRefGoogle Scholar
  18. 18.
    Mohanty, M., Patra, H. K. (2011) Attenuation of chromium toxicity by bioremediation technology. Rev. Env. Contam. Toxicol. 196, 1–34.Google Scholar
  19. 19.
    Mohanty, M., Patra, H. K. (2012) Effect of chelate assisted hexavalent chromium on physiological changes, biochemical alterations and Cr bioavailability in crop plants - An in vitro phytoremediation approach. Bioremed. J. (163), 147–155.CrossRefGoogle Scholar
  20. 20.
    Panda, S. K., Patra, H. K. (1997) Some of the toxicity lesions produced by chromium (VI) during the early phase of seed germination in wheat. J. Ind. Bot. Soc. 196, 303–304.Google Scholar
  21. 21.
    Patra, H. K., Mishra, D. (1979) Phytophosphatase, peroxidase and polyphenol oxidase activities during leaf development and senescence. Plant Physiol. 196, 318–323.CrossRefGoogle Scholar
  22. 22.
    Peralta, J. R., Gardea Torresday, J. L., Tiemann, K. J., Gomez, E., Arteaga, S., Rascon, E. (2001) Uptake and effects of five heavy metal on seed germination and plant growth in alfalfa (Medicago sativa L). Bull. Env. Cont. Toxicol. 196, 727–734.Google Scholar
  23. 23.
    Porra, R. J. (2002) The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynth. Res. 196, 149–156.CrossRefGoogle Scholar
  24. 24.
    Salt, D. E., Blaylock, M., Kumar, N. P. B. A., Dushenkov, V., Ensley, B. D., Chet, I., Raskin, I. (1995) Phytoremediation: A novel strategy for the removal of toxic metals from the environment using plants. Biotech. 196, 468–474.Google Scholar
  25. 24a.
    Turner, A. P. (1994) The responses of plants to heavy metals. In: Ross, S. M. (ed.) ‘Toxic Metals in Soil-Plant Systems’. John Wiley and Sons, Chichester, pp. 153–187.Google Scholar
  26. 25.
    Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., Singh, S. N. (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 196, 1075–1082.CrossRefGoogle Scholar
  27. 26.
    Wong, M. H., Bradshaw, A. D. (1982) A comparison of the toxicity of heavy metals, using root elongation of rye grass, Lolium perenne. New Phytol. 196, 255–261.CrossRefGoogle Scholar
  28. 27.
    Yoshida, Y., Kioyoshue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Tamaguchi-Shinozaki, K. K., Wada, K., Harada, Y., Shonozaki, K. (1995) Correlation between the induction of a gene for pyrrolin. 5-carboxylate synthase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J. 196, 751–760.CrossRefGoogle Scholar
  29. 28.
    Zayed, A. M., Terry, N. (2003) Chromium in the environment: factor affecting biological remediation. Plant. Soil. 196, 139–156.CrossRefGoogle Scholar
  30. 29.
    Zeid, I. M. (2001) Responses of Phaseolus vulgaris to chromium and cobalt treatments. Biol. Plant. 196, 111–115.CrossRefGoogle Scholar
  31. 30.
    Zhu, Y. L., Zayed, A. M., Qian, J. H., de Souza, M., Terry, N. (1999) Phytoaccumulation of trace elements by wetland plants: II. Water Hyacinth. J. Env. Qual. 196, 339–344.CrossRefGoogle Scholar
  32. 31.
    Zou, J. H., Wang, M., Jiang, W. S., Liu, D. H. (2006) Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. ActaBiol. Crac. Ser. Bot. (481), 7–12.Google Scholar
  33. 32.
    Zou, J., Yu, K., Zhang, Z., Jiang, W., Liu, D. (2009) Antioxidant response system and chlorophyll fluorescence in chromium(VI) treated Zea mays L. seedlings. ActaBiol. Crac. Ser. Bot. (511) 23–33.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Monalisa Mohanty
    • 1
    Email author
  • Chinmay Pradhan
    • 2
  • Hemanta Kumar Patra
    • 1
  1. 1.Laboratory of Environmental Physiology and Biochemistry, Post Graduate Department of BotanyUtkal University, Vani ViharBhubaneswarIndia
  2. 2.Laboratory of Microbial Biotechnology, Post Graduate Department of BotanyUtkal University, Vani ViharBhubaneswarIndia

Personalised recommendations