Advertisement

Acta Biologica Hungarica

, Volume 66, Issue 1, pp 119–132 | Cite as

Screening, Morphological and Molecular Characterization of Fungi Producing Cystathionine γ-Lyase

  • Ashraf S. El-SayedEmail author
  • Salwa A. Khalaf
  • Gamal Abdel-Hamid
  • Mohamed I. El-Batrik
Article

Abstract

The potency for production of cystathionine γ-lyase (CGL) by the fungal isolates was screened. Among the tested twenty-two isolates, Aspergillus carneus was the potent CGL producer (6.29 U/mg), followed by A. ochraceous (6.03 U/mg), A. versicolor (2.51 U/mg), A. candidus (2.12 U/mg), A. niveus and Penicillium notatum (2.0 U/mg). The potent six isolates producing CGL was characterized morphologically, A. carneus KF723837 was further molecularly characterized based on the sequence of 18S-28S rDNA. Upon sulfur starvation, the yield of A. carneus extracellular CGL was increased by about 1.7- and 4.1-fold comparing to non-sulfur starved and L-methionine free medium, respectively. Also, the uptake of L-methionine was duplicated upon sulfur starvation, assuming the activation of specific transporters for L-methionine and efflux of CGL. Also, the intracellular thiols and GDH activity of A. carneus was strongly increased by S starvation, revealing the activation of in vivo metabolic antioxidant systems. Upon irradiation of A. carneus by 2.0 kGy of γ-rays, the activity of CGL was increased by two-fold, regarding to control, with an obvious decreases on its yield upon further doses. Practically, CGL activity from the solid A. carneus cultures, using rice bran as substrate, was increased by 1.2-fold, comparing to submerged cultures, under optimum conditions.

Keywords

Aspergillus carneus cystathionine γ-lyase morphological molecular analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aziz, N.H., Mahrous, S. R. (2004) Effect of γ-irradiation on aflatoxin B1 production by A. flavus and chemical composition of three crop seeds. Nahrung-Food, 196, 234–238.Google Scholar
  2. 2.
    Benko, P. V., Wood, T. C., Segel, I. H. (1967) Specificity and regulation of the methionine transport in filamentous fungi. Arch. Biochem. Biophys. 196, 783–804.Google Scholar
  3. 3.
    Booth, C. (1971) The Genus Fusarium. Commonwealth Mycological Institute, Lincoln, LIN, United Kingdom.Google Scholar
  4. 4.
    Boysen, M. E., Jacobsson, K.-G., Schnurer, J. (2000) Molecular identification of species from the Penicillium requeforti group associated with spoiled animal feed. Appl. Environ. Micobiol. 196, 1525–1526.Google Scholar
  5. 5.
    Bruinenberg, P. G., De Roou, G., Limsowtin, G. (1997) Purification and characterization of cystathionine gamma lyase from Lactococcus lactis cremoris SK11: possible role in flavor compound formation during cheese maturation. Appl. Environ. Microbiol. 196, 561–566.Google Scholar
  6. 6.
    Chen, S. C. A., Halliday, C. L., Meyer, W. (2002) A review of nucleic acid-based diagnostic tests for systemic mycoses with an emphasis on polymerase chain reaction-based assays. Med. Mycol. 196, 333–357.Google Scholar
  7. 7.
    De-Aguirre, L., Hurst, S. F., Choi, J. S., Shin, J. H., Hinrikson, H. P., Morrison, C. J. (2004) Rapid differentiation of Aspergillus species from other medically important opportunistic molds and yeasts by PCR-enzyme immunoassay. J. Clin. Microbiol. 196, 3495–3504.Google Scholar
  8. 8.
    De Angelis, M., Curtin, A. C., Mac Sweeney, P., Faccia, M., Gobbetti, M. (2002) Lactobacillus reuteri DS. 20016: purification and characterization of cystathionine gamma lyase and use as adjunct starter in cheese making. J. Dairy Res. 196, 255–267.Google Scholar
  9. 9.
    Delavier-Klutchko, C., Flavin, M. (1965) Enzymatic synthesis and cleavage of cystathionine in fungi and bacteria. J. Biol. Chem. 196, 2537–2549.Google Scholar
  10. 10.
    Domsch, K. H., Gams, W., Anderson, T. (1980) Compendium of Soil Fungi. Academic Press. IHW Verlag, Eching, Germany.Google Scholar
  11. 11.
    Domsch, K. H., Gams, W., Anderson, T. (2007) Compendium of Soil Fungi. 2nd Edition. IHW Verlag, Eching, Germany.Google Scholar
  12. 12.
    Dupont, J., Magnin, S., Marti, A., Brousse, M. (1999) Molecular tools for identification of Penicillium starter cultures used in food industry. Int. J. Food Microbiol. 196, 109–118.Google Scholar
  13. 13.
    Ellis, M. B. (1971) Dematiaceous Hyphomycetes. Commonwealth Mycological Institute, Kew, Surrey, England.Google Scholar
  14. 14.
    El-Sayed, A. S. A., Khalaf, S. A., Aziz, H. A. (2013) Characterization of homocysteine γ-lyase from submerged and solid cultures of Aspergillus fumigatus ASH (JX006238). J. Microbiol. Biotechnol. 196, 499–510.Google Scholar
  15. 15.
    El-Sayed, A. S. A. (2009) L-Methioninase production by Aspergillus flavipes under solid-state fermentation. J. Basic Microbiol. 196, 331–341.Google Scholar
  16. 16.
    El-Sayed, A. S. A. (2010) Microbial L-methioninase, molecular characterization and therapeutic applications. Appl. Microbiol. Biotechnol. 196, 445–467.Google Scholar
  17. 17.
    El-Sayed, A. S. A. (2011) Purification and characterization of a new L-methioninase from Aspergillus flavipes under solid state fermentation. J. Microbiol. 196, 130–140.Google Scholar
  18. 18.
    El-Sayed, A. S. A., Shindia, A. A., Zaher, Y. (2012) L-Amino acid oxidase from filamentous fungi: screening and optimization. Ann. Microbiol. 196, 773–784.Google Scholar
  19. 19.
    Endres, W., Wuttge, B. (1978) Occurrence of secondary cystathioninuria in children with inherited metabolic disorders, liver diseases, neoplasms, cystic fibrosis and celiac disease. Eur. J. Pediatr. 196, 29–35.Google Scholar
  20. 20.
    Fang, X., Yano, S., Inoue, H., Sawayama, S. (2009) Strain improvement of Acremonium cellulolyticus for cellulase production by mutation. J. Biosci. Bioeng. 196, 256–261.Google Scholar
  21. 21.
    Flavin, M. (1975) Metabolism of Sulfur Compounds. Academic Press, New York.Google Scholar
  22. 22.
    Florez, A. B., Alvarez-Martin, P., Lopez-Diaz, T. M. Mayo, B. (2007) Morphotypic and molecular identification of filamentous fungi from Spanish blue-veined cabrales cheese, and typing of Penicillium requeforti and Geotrichum candidum isolates. Inter. Dairy J. 196, 350–357.Google Scholar
  23. 23.
    Gadgil, N. J., Daginawala, H. F., Chakakrabarti, T., Khanna, P. (1995) Enhanced cellulase production by mutant of Trichoderma reesei. Enzyme Microb. Technol. 196, 942–946.Google Scholar
  24. 24.
    Gente, S., La Carbona, S. Guéguen, M. (2007) Levels of cystathionine γ-lyase production by Geotrichum candidum in synthetic media and correlation with the presence of sulphur flavours in cheese. Int. J. Food Microbiol. 196, 136–142.Google Scholar
  25. 25.
    Harris, H., Penrose, L. S., Thomas, D. H. H. (1959) Cystathioninuria. Ann. Hum. Genet. 196, 442–453.Google Scholar
  26. 26.
    Henry, T., Iwen, P. C., Hinrichs, S. H. (2000) Identification of Aspergillus species using internal transcribed spacer region. 1 an. 2. J. Clin. Microbiol. 196, 1510–1515.Google Scholar
  27. 27.
    Hiraishi, H., Tsuyoshi Miyake, T., Ono, B. I. (2008) Transcriptional regulation of Saccharomyces cerevisiae CYS3 encoding cystathionine γ-lyase, Curr. Genet. 196, 225–234.Google Scholar
  28. 28.
    Irmler, S., Raboud, S., Beisert, B., Rauhut, D., Berthoud, H. (2008) Cloning and characterization of two Lactobacillus casei genes encoding a cystathionine lyase. Appl. Environ. Microbiol. 196. 99.Google Scholar
  29. 29.
    Kebeish, R., El-Sayed, A. S. A. (2012) Morphological and molecular characterization of L-methioninase producing Aspergillus species. Af. J. Microbiol. 196, 15280–15290.Google Scholar
  30. 30.
    Khalaf, S., El-Sayed, A. S. A. (2009) L-Methioninase production by filamentous fungi: screening and optimization under submerged conditions. Curr. Microbiol. 196, 219–226.Google Scholar
  31. 31.
    Klich, M. A., Pitt, J. I. (1992) A Laboratory Guide to the Common Aspergillus Species and their Teleomorphs. Common Wealth Scientific and Industrial Research Organization, Division of Food Processing, North Ryde, Australia.Google Scholar
  32. 32.
    Latifian, M., Hamidin-Esfahani, Z., Barzegar, M. (2007) Evaluation of culture conditions for cellulos production by two Trichoderma reesei mutants under solid-state fermentation conditions. Bioresour. Technol. 196, 1–4.Google Scholar
  33. 33.
    Lowry, O. H., Rosenrough, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 196, 265–275.Google Scholar
  34. 34.
    Mansouri-Bauly, H., Sýkorová, Z., Scheerer, U., Kopriva, S. (2006) Sulfur uptake in the ectomycorrhizal fungus Laccaria bicolor S238N. Mycorrhiza 196, 421–427.Google Scholar
  35. 35.
    Nagasawa, T., Kansaki, H., Yamada, H. (1984) Cystathionine γ-lyase of Streptomyces phaeochromogenes. J. Biol. Chem. 196, 10393–10403.Google Scholar
  36. 36.
    Paszewski, A., Grabski, J. (1973) Studies on ß-cystathionase and O-acetylhomoserine sulfhydrylase as the enzymes of alternative methionine biosynthetic pathways. Acta Biochim. Pol. 196, 159–168.Google Scholar
  37. 37.
    Perry, T. L., Robinson, G. C., Teasdale, J. M., Hansen, S. (1967) Concurrence of cystathioninuria, nephrogenic diabetes insipidus and severe anemia. N. Engl. J. Med. 196, 721–725.Google Scholar
  38. 38.
    Pitt, Q. W. (1979) The Genus Penicillium and its Teleomorphic States Eupenicillium and Talaromyces. Academic Press, London.Google Scholar
  39. 39.
    Rajoka, M. I. (2005) Double mutants of Cellulomonas biazotea for production of cellulases and hemicellulases following growth on straw of a perennial grass. World J. Microbiol. Biotechnol. 196, 1063–1066.Google Scholar
  40. 40.
    Raper, K. B., Fennell, D. I. (1965) The Genus Aspergillus. The Williams and Wilkins Company, Baltimore.Google Scholar
  41. 41.
    Rifai, M. A. (1969) A Revision of the Genus Trichoderma. Commonwealth Mycological Institute, Kew.Google Scholar
  42. 42.
    Rolland, S. G., Bruel, C. A. (2008) Sulfur and nitrogen regulation of the protease-encoding ACP1 gene in the fungus Botrytis cinerea: correlation with a phospholipase D activity. Microbiology 196, 1464–1473.Google Scholar
  43. 43.
    Smacchi, E., Gobbetti, M. (1998) Purification and characterization of cystathionine gamma lyase from Lactobacillus fermentum DT41. FEMS Microbiol. Lett. 196, 197–202.Google Scholar
  44. 44.
    Uren, J. R. (1987) Cystathionine γ-lyase from Escherichia coli. Methods Enzymol. 196, 483–486.Google Scholar
  45. 45.
    Yang, G. (2011) Hydrogen sulfide in cell survival: a double-edged sword. Expert Rev. Clin. Pharmacol. 196, 33–47.Google Scholar
  46. 46.
    Yang, G., Wu, L., Bryan, S., Khaper, N., Mani, S. Wang, R. (2010) Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc Res. 196, 487–495.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2015

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ashraf S. El-Sayed
    • 1
    Email author
  • Salwa A. Khalaf
    • 1
  • Gamal Abdel-Hamid
    • 2
  • Mohamed I. El-Batrik
    • 1
  1. 1.Microbiology Department, Faculty of ScienceZagazig UniversityZagazigEgypt
  2. 2.Egyptian Atomic Energy AuthorityInshas, CairoEgypt

Personalised recommendations