Detection of DNA Damage Caused by Cryopreservation using a Modified SCGE in Large Yellow Croaker, Pseudosciaena crocea
Abstract
We used single-cell gel electrophoresis (SCGE) to detect the integrity of sperm DNA of the teleost large yellow croaker, Pseudosciaena crocea, cryopreserved with Cortland solution and a range of 5% to 30% DMSO concentrations in order to test how sperm cryopreservation affected the DNA stability of nuclei. Electrophoresis was conducted for 60 min at 130 mA and 15 V. The comet images were analyzed with software CometScore 1.5, and parameters such as comet length, tail length and percentage DNA in the tail were obtained. Then the comet rate and damage coefficient were calculated. Results demonstrated that there were no significant differences in motility, comet rate and damage coefficient between fresh sperm and cryopreserved sperm stored in 5%, 10%, 15% and 20% DMSO, while the sperm cryopreserved with 25% and 30% DMSO had a lower motility, higher comet length and damage coefficients than those of fresh sperm. There was a positive correlation between comet rate of cryopreserved sperm and the concentration of DMSO. Our results demonstrate that toxicity of the cryoprotectant is the main cause of DNA damage in cryopreserved sperm nuclei.
Keywords
Pseudosciaena crocea sperm cryopreservation genetic damage single-cell gel electrophoresisPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgements
We thank the following projects for their support: K. C. Wong Magna Fund in Ningbo University, The Scientific and Technical Project of Zhejiang Province, National Natural Science Foundation of China (Grant Nos. 41276151, 31272642 and 31072198).
References
- 1.Beirão, J., Zilli, L., Vilella, S., Cabrita, E., Schiavone, R., Herraez, M. P. (2012) Improving sperm cryopreservation with antifreeze proteins: Effect on gilthead seabream (Sparus aurata) plasma membrane lipids. Biol. Reprod. 86, 59.CrossRefGoogle Scholar
- 2.Cabrita, E., Robles, V., Rebordinos, L., Sarasquete, C., Herráez, M. P. (2005) Evaluation of DNA damage in rainbow trout Oncorhynchus mykiss and gilthead sea bream Sparus aurata cryopreserved sperm. Cryobiology 50, 144–153.CrossRefGoogle Scholar
- 3.Chen, A. (1998) Detection of DNA damage on single cell using single cell gel electrophoresis. Forensic Medical Science (section of Clinical Biochemistry and Laboratory Medicine) 19, 145–146.Google Scholar
- 4.Dahms, H. U., Gao, Q. F., Hwang, J. S. (2007) Optimized maintenance and larval production of the bryozoan Bugula neritina (Bryozoa) in the laboratory. Aquaculture 265, 169–175.CrossRefGoogle Scholar
- 5.Gi, B. K., Richard, F. L. (2004) Effects of genotoxic compounds on DNA and development of early and late grass shrimp embryo stages. Mar. Environ. Res. 57, 329–338.CrossRefGoogle Scholar
- 6.Giovannelli, L., Decorosi, F., Dolara, P., Pulvirenti, L. (2003) Vulnerability to DNA damage in the aging rat Substantia nigra: a study with the comet assay. Brain Res. 969, 244–247.CrossRefGoogle Scholar
- 7.Goerin, P. L. (1995) Handbook of Experimental Pharmacology. New York: Springer-Verlag, pp. 187–213.Google Scholar
- 8.Gwo, J. C., Arnold, C. R. (1992) Cryopreservation of Atlantic croaker spermatozoa: evaluation of morphological changes. J. Exp. Zool. 264, 444–453.CrossRefGoogle Scholar
- 9.Hagedorn, M., Carter, V. L. (2011) Zebrafish reproduction: revisiting in vitro fertilization to increase sperm cryopreservation success. Plos One 6, 1–9.CrossRefGoogle Scholar
- 10.Han, L. L., Yuan, Z., Dahms, H. U., Li, Q. Y., Zhang, Q. Z., Wu, R. J., Tan, J., Zou, X. Y., Hou, L. (2012) Molecular cloning, characterization and expression analysis of a C-type lectin (AJCTL) from the sea cucumber Apostichopus japonicus. Immunology Letters 143, 137–145.CrossRefGoogle Scholar
- 11.Kim, J. H., Jeon, H. J., Baek, J. M., Han, K. N., Dahms, H. U. (2013) EDCs-induced glucocorticoid receptor related genes expression of the river pufferfish, Takifugu obscurus. Aquacul. Res. 44, 985–994.CrossRefGoogle Scholar
- 12.Kim, J. H., Jung, S. J., Dahms, H. U., Lee, W. O., Ryu, K. M., Han, K. N. (2013) Osmoregulation related gene expression of the anadromous river pufferfish Takifugu obscurus under sudden salinity changes. J. Fish Physiol. Biochem. 40, 205–219.Google Scholar
- 13.Koppen, G., Toncelli, T. M., Triest, L., Verschaeve, L. (1999) The comet assay: a tool to study alterations of DNA integrity in developing plant leaves. Mech. Age Dev. 110, 13–24.CrossRefGoogle Scholar
- 14.Labbe, C., Martoriati, A., Devaux, A., Maisse, G. (2001) Effect of sperm cryopreservation on sperm DNA stability and progeny development in rainbow trout. Mol. Reprod. Dev. 60, 397–404.CrossRefGoogle Scholar
- 15.Lin, D. J., You, Y. L. (2002) Physiological characteristics and cryopreservation of Pseudosciaena crocea (Richardson) sperm. J. Trop. Oceanography 21, 69–75.Google Scholar
- 16.Lin, D. J., You, Y. L., Chen, B. Y. (2006) Variation of the motility and ultrastructure of the frozenthawed sperm in teleost, Pseudosciaena crocea (Richardson). J. Fujian Normal Univ. (Nat. Sci. Ed.) 22, 71–76.Google Scholar
- 17.Lu, H., Zhang, L., Zhang, N., Tang, J., Ding, X. P., Tang, Y. (2002) Detection of DNA damage of human sperm using single cell electrophoresis. Zhonghua Nan Ke Xue 8, 416–418.PubMedGoogle Scholar
- 18.Maluf, S. W., Erdtmann, B. (2000) Follow-up study of the genetic damage in lymphocytes of pharmacists and nurses handling antineoplastic drugs evaluated by cytokinesis-block micronuclei analysis and single cell gel electrophoresis assay. Mutant Res. 471, 21–27.CrossRefGoogle Scholar
- 19.Rossa, G. M., McMillan, T. J., Wilcox, P., Collins, A. R. (1995) The single cell microgel electrophoresis assay (comet assay): technical aspects and applications: Report on the 5th LH Gray Trust Workshop, Institute of Cancer Research 1994. Mutant Res. 337, 57–60.CrossRefGoogle Scholar
- 20.Singh, N. P., McCoy, M. T., Tice, R. R., Schneider, E. L. (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp. Cell Res. 175, 184–191.CrossRefGoogle Scholar
- 21.Song, B., Zheng, L. K., Deng, L. X., Zhang, Q. (2002) Freezing effect on sperm DNA. Zhonghua Nan Ke Xue 4, 253–254.Google Scholar
- 22.Stavreva, D. A., Ptacek, O., Plewa, M. J., Gichner, T. (1998) Single cell gel electrophoresis analysis of genomic damage induced by ethyl methanesulfonate in cultured tobacco cells. Mutant Res. 422, 323–330.CrossRefGoogle Scholar
- 23.Suquet, M. D., Dreanno, C., Petton, B., Normant, Y., Omnes, M. H., Billard, R. (1998) Long-term effects of the cryopreservation of turbot Psetta maxima spermatozoa. Aquatic Living Resour. 11, 45–48.CrossRefGoogle Scholar
- 24.Tiersch, T. R., Figiel Jr., C. R., Wayman, W. R., Williamson, J. H., Carmichael, G. J., Gorman, O. T. (2000) Cryopreservation of sperm of the endangered razorback sucker. In: Tiersch, T. R., Mazik. P. M. (eds) Cryopreservation in Aquatic Species. World Aquaculture Society, Baton Rouge, Louisiana, pp. 117–122.Google Scholar
- 25.Xu, D. X., Shen, H. M., Wang, J. N. (2000) Detection of DNA strand breakage in human spermatozoa by use of single-cell gel electrophoresis. China Medical Board NY 17, 281–284.Google Scholar
- 26.Xu, X. R., Zhu, J. Q., Ye, T., Wang, C. L., Zhu, Y. F., Dahms, H. U., Jin, F., Yang, W. X. (2013) Improvement of single-cell alkaline comet assay gel electrophoresis (SCGE) procedure using sperm DNA of large yellow croaker Pseudosciaena crocea. Aquatic Biol. 18, 293–295.CrossRefGoogle Scholar
- 27.Yang, J. Y., Li, L., Peng, Y., Du, S. J. (2004) DNA damage caused by low dose methotrexate and protective effect of folinic acid. Carcinogenesis, Teratogenesis & Mutagenesis 16, 24–26.Google Scholar
- 28.Ye, T., Zhu, J. Q., Yang W. X., Wei, P., Wu, X. F. (2009) Sperm cryopreservation in Sparus macrocephalus and DNA damage detection with SCGE. Zool. Res. 30, 151–157.CrossRefGoogle Scholar
- 29.Zilli, L., Schiavone, R., Zonno, V., Storelli, C., Vilella, S. (2003) Evaluation of DNA damage in Dicentrarchus labrax sperm following cryopreservation. Cryobiology 47, 227–235.CrossRefGoogle Scholar
Copyright information
This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.