Advertisement

Acta Biologica Hungarica

, Volume 65, Issue 3, pp 319–330 | Cite as

Investigation of the Effects of Cadmium by Micro Analytical Methods on Lycopersicon esculentum Mill. Roots

  • G. ColakEmail author
  • M. C. Baykul
  • R. Gürler
  • E. Catak
  • N. Caner
Article

Abstract

The interactions between cadmium stress and plant nutritional elements have been investigated on complete plant or at the level of organs. This study was undertaken to contribute to the exploration of the physiological basis of cadmium phytotoxicity. We examined the changes in the nutritional element compositions of the root epidermal cells of the seedlings of Lycopersicon esculentum Mill. at the initial growth stages that is known as the most sensitive stage to the stress. Effects of cadmium stress on the seedlings of Lycopersicon esculentum Mill. were examined by EDX (Energy Dispersive X-Ray Microanalysis) assay performed with using low vacuum (≈ 24 Pascal) Scanning Electron Microscopy. In the analysis performed at the level of root epidermal cells, some of the macro- and micronutrient contents of the cells (carbon, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, iron, copper, and zinc levels) were found to change when the applying toxic concentrations of cadmium. There was no change in the manganese and sodium content of the epidermal cells. It was concluded that the changes in nutritional element composition of the cells can be considered as an effective parameter in explaining the physiological mechanisms of cadmium-induced growth inhibition.

Keywords

Lycopersicon esculentum cadmium toxicity plant nutrients SEM EDX 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahmad, J. U., Goni, M. A. (2010) Heavy metal contamination in water, soil, and vegetables of the industrial areas in Dhaka, Bangladesh. Environ. Monit. Assess. 166, 347–357.CrossRefGoogle Scholar
  2. 2.
    Babaoğlu, M., Gürel, E., Özcan, S. (2001) Bitki Biyoteknolojisi, Doku Kültürü ve Uygulamaları. Selçuk Üniversitesi Yayınları, Konya.Google Scholar
  3. 3.
    Bindu, T., Sumi, M. M., Ramasamy, E. V. (2010) Decontamination of water polluted by heavy metals with Taro (Colocasia esculenta) cultured in a hydroponic NFT system. The Environm. 30, 35–44.CrossRefGoogle Scholar
  4. 4.
    Burton, K. W., Morgan, E., Roig, A. (1986) Interactive effects of cadmium, copper and nickel on the growth of sitka spruce and studies of metal uptake from nutrient solutions. New Phytol. 103, 549–557.CrossRefGoogle Scholar
  5. 5.
    Catak, E., Colak, G., Tokur, S., Bilgic, O. (2000) Bazı domates ve tütün genotiplerinde kadmiyum etkilerini inceleyen istatistiksel bir çalışma. BAÜ Fen Bilimleri Enstitüsü Dergisi. 2, 13–41.Google Scholar
  6. 6.
    Cataldo, D. A., Garland, T. R., Wildung, R. E. (1983) Cadmium uptake kinetics in intact soybean plants. Plant Physiol. 73, 844–848.CrossRefGoogle Scholar
  7. 7.
    Chunilall, V., Kindness, A., Jonnalagadda, S. B. (2005) Heavy metal uptake by spinach leaves grown on contaminated soils with lead, mercury, cadmium and nickel. J. Environ. Sci. Health, Part B. 39, 473–481.CrossRefGoogle Scholar
  8. 8.
    Cui, Y., Zhang, X., Zhu, Y. (2008) Does copper reduce cadmium uptake by different rice genotypes? J. Environ. Sci. 20, 332–338.CrossRefGoogle Scholar
  9. 9.
    Drazic, G., Mihailovic, N., Stojanovic, Z. (2004) Cadmium toxicity: The effect on macro and micro nutrient contents in soybean seedlings. Biol. Plantarum 48, 605–607.CrossRefGoogle Scholar
  10. 10.
    Goodhew, J. P., Humpreys, J., Beanland, R. (2001) Electron Microscopy and Analysis, 3rd Edition. Taylor & Francis Inc., New York.Google Scholar
  11. 11.
    Gussarsson, M. (1994) Cadmium induced alterations in nutrient composition and growth of Betula pendula seedlings: The significance of fine roots as a primary target for cadmium toxicity. J. Plant Nutr. 17, 2151–2163.CrossRefGoogle Scholar
  12. 12.
    Jalil, A., Selles, F., Clarke, J. M. (1994) Effect of cadmium on growth and the uptake of cadmium and other elements by durum wheat. J. Plant Nutr. 17, 1839–1858.CrossRefGoogle Scholar
  13. 13.
    Krstić, B., Stanković, D., Igić, R., Nikolić, N. (2007) The potential of different plant species for nickel accumulation. Biotechnol. & Biotech. Equip. 21, 431–436.CrossRefGoogle Scholar
  14. 14.
    Larsson, E. H., Bornman, J. F., Asp, H. (1998) Influence of UV-B radiation and Cd2+ on chlorophyll fluorescence, growth and nutrient content in Brassica napus. J. Exp. Bot. 49, 1031–1039.CrossRefGoogle Scholar
  15. 15.
    Lehoczky, E., Marth, P., Szabados, I., Palkovics, M., Lukacs, P. (2000) Applications in food quality and environmental contamination. Influence of soil factor on the accumulation of cadmium by lettuce. Commun. Soil Sci. Plant Anal. 31, 2425–2431.CrossRefGoogle Scholar
  16. 16.
    Lehoczky, E., Szabó, L., Horváth, S., Marth, P., Szabados, I. (1998) Cadmium uptake by lettuce in different soils. Commun. Soil Sci. Plant Anal. 29, 1903–1912.CrossRefGoogle Scholar
  17. 17.
    Liu, J. G., Liang, J. S., Li, K. Q., Zhang, Z. J., Yu, B. Y., Lu, X. L., Yang, J. C., Zhu, Q. S. (2003) Correlations between cadmium and mineral nutrients in absorption and accumulation in various genotypes of rice under cadmium stress. Chemosphere 52, 1467–1473.CrossRefGoogle Scholar
  18. 18.
    Liu, W. X., Shen, L. F., Liu, J. W., Wang, Y. W., Li, S. R. (2007) Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull. Environ. Contam. Toxicol. 79, 209–213.CrossRefGoogle Scholar
  19. 19.
    Mohammad, A., Moheman, A. (2010) The effects of cadmium and zinc interactions on the accumulation and tissue distribution of cadmium and zinc in tomato (Lycopersicon esculentum Mill.). Arch. Agron. Soil Sci. 56, 551–561.CrossRefGoogle Scholar
  20. 20.
    Moral, R., Gomez, I., Navarro-Pedrono, J., Mataix, J. (1994) Effects of cadmium on nutrient distribution, yield and growth of tomato grown in soilless culture. J. Plant Nutr. 17, 953–962.CrossRefGoogle Scholar
  21. 21.
    Murashige, T., Skoog, F. (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497.CrossRefGoogle Scholar
  22. 22.
    Obata, H., Umebayashi, M. (1999) Effects of cadmium on mineral nutrient concentrations in plants differing in tolerance for cadmium. J. Plant Nutr. 20, 97–105.CrossRefGoogle Scholar
  23. 23.
    Quariti, O., Gouia, H., Ghorbal, M. H. (1997) Responses of bean and tomato plants to cadmium: Growth, mineral nutrition and nitrate reduction. Plant Physiol. Biochem. 35, 347–354.Google Scholar
  24. 24.
    Salamon, I., Labun, P., Skoula, M., Fabian, M. (2007) Cadmium, lead and nickel accumulation in chamomile plants grown on heavy metal enriched soil. Acta Horticult. 749, 231–236.CrossRefGoogle Scholar
  25. 25.
    Shehu, A., Mullaj, A., Harizaj, F., Shehu, J. (2010) Assessment of heavy metals accumulation by different spontaneous plant species grown along Lana River, Albania. BALWOIS 2010: Conference on Water Observation and Information System for Decision Support, 25–29 May 2010, Ohrid, Republic of Macedonia. https://doi.org/www.balwois.com/2010-126.Google Scholar
  26. 26.
    Sidhu, V. P. S., Khurana, M. P. S. (2010) Effect of cadmium contaminated soils on dry matter yield and mineral composition of raya (Brassica juncea) and spinach (Spinacia oleracea). J. Acta Agronom. Hung. 58, 407–417.CrossRefGoogle Scholar
  27. 27.
    Simon, L. (1998) Cadmium accumulation and distribution in sunflower plant. J. Plant Nutr. 21, 341–352.CrossRefGoogle Scholar
  28. 28.
    Sinegani, A. A. S., Dastjerdi, F. S. (2009) The accumulation of zinc and nickel in Irankoh indigenous plant species on a contaminated land. Soil Sediment Contam. 18, 525–534.CrossRefGoogle Scholar
  29. 29.
    Soudek, P., Kotyza, J., Lenikusová, I., Petrová, S., Benešová, D., Vaněk, T. (2009) Accumulation of heavy metals in hydroponically cultivated garlic (Allium sativum L.), onion (Allium cepa L.), leek (Allium porrum L.) and chive (Allium schoenoprasum L.). J. Food, Agricult. Environ. 7, 761–769.Google Scholar
  30. 30.
    Suchor-Fumbarov, T., Keilin, Z., Tel-Or, E. (2003) Characterization of cadmium uptake by the water lily Nymphaea aurora. Intern. J. Phytoremed. 5, 169–179.CrossRefGoogle Scholar
  31. 31.
    Vasiliadou, S., Dordas, C. (2008) Increased concentration of soil cadmium affects on plant growth, dry matter accumulation, Cd and Zn uptake of different tobacco cultivars (Nicotiana tabacum L.). Intern. J. Phytoremed. 11, 115–130.CrossRefGoogle Scholar
  32. 32.
    Wu, F., Zhang, G., Yu, J. (2003) Interaction of cadmium and four micro elements for uptake and translocation in different barley genotypes. Commun. Soil Sci. Plant Anal. 34, 2003–2020.CrossRefGoogle Scholar
  33. 33.
    Xue, D. S., Harrison, R. B., Henry, C. L. (1995) Effect of organic acid on Cd toxicity in tomato and bean growth. J. Environ. Sci. 7, 399–406.Google Scholar
  34. 34.
    Yang, X., Baligar, V. C., Martens, D. C., Clark, R. B. (1996) Cadmium effects on influx and transport of mineral nutrients in plant species. J. Plant Nutr. 19, 643–656.CrossRefGoogle Scholar
  35. 35.
    Yargholi, B., Azimi, A. A., Baghvand, A., Liaghat, A. M., Fardi, G. A. (2008) Investigation of cadmium absorption and accumulation in different parts of some vegetables. American-Eurasian J. Agricult. Environ. Sci. 3, 357–364.Google Scholar
  36. 36.
    Zhang, G., Fukami, M., Sekimoto, H. (2000) Genotypic differences in effects of cadmium on growth and nutrient compositions in wheat. J. Plant Nutr. 23, 1337–1350.CrossRefGoogle Scholar
  37. 37.
    Zhang, G., Fukami, M., Sekimoto, H. (2002) Influence of cadmium on mineral concentrations and yield components in wheat genotypes differing in Cd tolerance at seedling stage. Field Crops Res. 77, 93–98.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • G. Colak
    • 1
    Email author
  • M. C. Baykul
    • 2
  • R. Gürler
    • 4
  • E. Catak
    • 1
  • N. Caner
    • 3
  1. 1.Science Faculty Department of BiologyEskisehir Osmangazi UniversityEskisehirTurkey
  2. 2.Science Faculty Department of PhysicsEskisehir Osmangazi UniversityEskisehirTurkey
  3. 3.Science Faculty Department of ChemistryEskisehir Osmangazi UniversityEskisehirTurkey
  4. 4.Metallurgy InstituteEskisehir Osmangazi UniversityEskisehirTurkey

Personalised recommendations