Acta Biologica Hungarica

, Volume 65, Issue 3, pp 265–273 | Cite as

Immunohistochemical Staining Reveals C-Reactive Protein Existing Predominantly as Altered Conformation Forms in Inflammatory Lesions

  • Ping Shi
  • Xiao-Xin Li
  • Wei Zhu
  • Hong Yang
  • Chi Dong
  • Xiao-Ming LiEmail author


C-reactive protein (CRP) is an established marker of inflammation and has been proposed to play a proinflammatory role in pathologies of several diseases. CRP is primarily produced by the liver and released into circulation as a pentameric molecule composed of five identical subunits. It has been suggested that the activation of the proinflammatory actions of CRP requires sequential conformational changes triggered by local inflammatory conditions. These include the dissociation into the subunit form (monomeric CRP, mCRP) and further reduction of the intra-subunit disulfide bond of mCRP. This model predicts that mCRP is the primary isoform present in inflamed but not healthy tissues, however the supporting evidence is lacking. Herein, we stained tissue samples across multiple anatomical locations from several types of human diseases with highly selective monoclonal antibodies that can differentiate CRP and mCRP. The results indicated that mCRP is the predominant form existing in the lesions. Further immunoblotting of the patient tissue samples revealed the potential presence of reduced mCRP. Together, we conclude that mCRP but not CRP is the major isoform present in local inflammatory lesions, supporting the so-called cascading model of CRP function and regulation.


C-reactive protein conformational changes inflammation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allin, K. H., Nordestgaard, B. G. (2011) Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit. Rev. Clin. Lab. Sci. 48, 155–170.CrossRefGoogle Scholar
  2. 2.
    Ciubotaru, I., Potempa, L. A., Wander, R. C. (2005) Production of modified C-reactive protein in U937-derived macrophages. Exp. Biol. Med. (Maywood) 230, 762–770.CrossRefGoogle Scholar
  3. 3.
    Eisenhardt, S. U., Habersberger, J., Murphy, A., Chen, Y. C., Woollard, K. J., Bassler, N., Qian, H., von Zur Muhlen, C., Hagemeyer, C. E., Ahrens, I., Chin-Dusting, J., Bobik, A., Peter, K. (2009) Dissociation of pentameric to monomeric C-reactive protein on activated platelets localizes inflammation to atherosclerotic plaques. Circ. Res. 105, 128–137.CrossRefGoogle Scholar
  4. 4.
    Eisenhardt, S. U., Thiele, J. R., Bannasch, H., Stark, G. B., Peter, K. (2009) C-reactive protein: how conformational changes influence inflammatory properties. Cell Cycle 8, 3885–3892.CrossRefGoogle Scholar
  5. 5.
    Filep, J. G. (2009) Platelets affect the structure and function of C-reactive protein. Circ. Res. 105, 109–111.CrossRefGoogle Scholar
  6. 6.
    Jabs, W. J., Logering, B. A., Gerke, P., Kreft, B., Wolber, E. M., Klinger, M. H., Fricke, L., Steinhoff, J. (2003) The kidney as a second site of human C-reactive protein formation in vivo. Eur. J. Immunol. 33, 152–161.CrossRefGoogle Scholar
  7. 7.
    Ji, S. R., Ma, L., Bai, C. J., Shi, J. M., Li, H. Y., Potempa, L. A., Filep, J. G., Zhao, J., Wu, Y. (2009) Monomeric C-reactive protein activates endothelial cells via interaction with lipid raft microdomains. FASEB J. 23, 1806–1816.CrossRefGoogle Scholar
  8. 8.
    Ji, S. R., Wu, Y., Potempa, L. A., Liang, Y. H., Zhao, J. (2006) Effect of modified C-reactive protein on complement activation: a possible complement regulatory role of modified or monomeric C-reactive protein in atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 26, 935–941.CrossRefGoogle Scholar
  9. 9.
    Ji, S. R., Wu, Y., Potempa, L. A., Qiu, Q., Zhao, J. (2006) Interactions of C-reactive protein with lowdensity lipoproteins: implications for an active role of modified C-reactive protein in atherosclerosis. Int. J. Biochem. Cell Biol. 38, 648–661.CrossRefGoogle Scholar
  10. 10.
    Ji, S. R., Wu, Y., Zhu, L., Potempa, L. A., Sheng, F. L., Lu, W., Zhao, J. (2007) Cell membranes and liposomes dissociate C-reactive protein (CRP) to form a new, biologically active structural intermediate: mCRP(m). FASEB J. 21, 284–294.CrossRefGoogle Scholar
  11. 11.
    Khreiss, T., Jozsef, L., Potempa, L. A., Filep, J. G. (2004) Conformational rearrangement in C-reactive protein is required for proinflammatory actions on human endothelial cells. Circulation 109, 2016–2022.CrossRefGoogle Scholar
  12. 12.
    Khreiss, T., Jozsef, L., Potempa, L. A., Filep, J. G. (2005) Loss of pentameric symmetry in C-reactive protein induces interleukin-8 secretion through peroxynitrite signaling in human neutrophils. Circ. Res. 97, 690–697.CrossRefGoogle Scholar
  13. 13.
    Khreiss, T., Jozsef, L., Potempa, L. A., Filep, J. G. (2004) Opposing effects of C-reactive protein isoforms on shear-induced neutrophil-platelet adhesion and neutrophil aggregation in whole blood. Circulation 110, 2713–2720.CrossRefGoogle Scholar
  14. 14.
    Lauer, N., Mihlan, M., Hartmann, A., Schlotzer-Schrehardt, U., Keilhauer, C., Scholl, H. P., Charbel Issa, P., Holz, F., Weber, B. H., Skerka, C., Zipfel, P. F. (2011) Complement regulation at necrotic cell lesions is impaired by the age-related macular degeneration-associated factor-H His402 risk variant. J. Immunol. 187, 4374–4383.CrossRefGoogle Scholar
  15. 15.
    Ma, X., Ji, S. R., Wu, Y. (2013) Regulated conformation changes in C-reactive protein orchestrate its role in atherogenesis. Chinese Sci. Bull. 58, 1642–1649.CrossRefGoogle Scholar
  16. 16.
    Mihlan, M., Blom, A. M., Kupreishvili, K., Lauer, N., Stelzner, K., Bergstrom, F., Niessen, H. W., Zipfel, P. F. (2011) Monomeric C-reactive protein modulates classic complement activation on necrotic cells. FASEB J. 25, 4198–4210.CrossRefGoogle Scholar
  17. 17.
    Molins, B., Pena, E., de la Torre, R., Badimon, L. (2011) Monomeric C-reactive protein is prothrombotic and dissociates from circulating pentameric C-reactive protein on adhered activated platelets under flow. Cardiovasc. Res. 92, 328–337.CrossRefGoogle Scholar
  18. 18.
    Pepys, M. B., Hirschfield, G. M. (2003) C-reactive protein: a critical update. J. Clin. Invest. 111, 1805–1812.CrossRefGoogle Scholar
  19. 19.
    Singh, S. K., Suresh, M. V., Voleti, B., Agrawal, A. (2008) The connection between C-reactive protein and atherosclerosis. Ann. Med. 40, 110–120.CrossRefGoogle Scholar
  20. 20.
    Sjowall, C., Bengtsson, A. A., Sturfelt, G., Skogh, T. (2004) Serum levels of autoantibodies against monomeric C-reactive protein are correlated with disease activity in systemic lupus erythematosus. Arthritis. Res. Ther. 6, R87–94.CrossRefGoogle Scholar
  21. 21.
    Sjowall, C., Cardell, K., Bostrom, E. A., Bokarewa, M. I., Enocsson, H., Ekstedt, M., Lindvall, L., Fryden, A., Almer, S. (2012) High prevalence of autoantibodies to C-reactive protein in patients with chronic hepatitis C infection: association with liver fibrosis and portal inflammation. Hum. Immunol. 73, 382–388.CrossRefGoogle Scholar
  22. 22.
    Wang, M. S., Messersmith, R. E., Reed, S. M. (2012) Membrane curvature recognition by C-reactive protein using lipoprotein mimics. Soft Matter. 8, 3909–3918.Google Scholar
  23. 23.
    Wang, M. Y., Ji, S. R., Bai, C. J., El Kebir, D., Li, H. Y., Shi, J. M., Zhu, W., Costantino, S., Zhou, H. H., Potempa, L. A., Zhao, J., Filep, J. G., Wu, Y. (2011) A redox switch in C-reactive protein modulates activation of endothelial cells. FASEB J. 25, 3186–3196.CrossRefGoogle Scholar
  24. 24.
    Wang, M. Y., Zhou, H. H., Zhang, S. C., Hui, F., Zhu, W., Su, H. X., Guo, H. Y., Li, X. W., Ji, S. R., Wu, Y. (2014) Recurrent mutations at C-reactive protein gene promoter SNP position -286 in human cancers. Cell Res., 24, 505–508.CrossRefGoogle Scholar
  25. 25.
    Wettero, J., Nilsson, L., Jonasson, L., Sjowall, C. (2009) Reduced serum levels of autoantibodies against monomeric C-reactive protein (CRP) in patients with acute coronary syndrome. Clin. Chim. Acta 400, 128–131.CrossRefGoogle Scholar
  26. 26.
    Wu, Y., Ji, S. R., Wang, H. W., Sui, S. F. (2002) Study of the spontaneous dissociation of rabbit C-reactive protein. Biochemistry (Mosc) 67, 1377–1382.CrossRefGoogle Scholar
  27. 27.
    Wu, Y., Wang, H. W., Ji, S. R., Sui, S. F. (2003) Two-dimensional crystallization of rabbit C-reactive protein monomeric subunits. Acta Crystallogr. D. Biol. Crystallogr. 59, 922–926.CrossRefGoogle Scholar
  28. 28.
    Yasojima, K., Schwab, C., McGeer, E. G., McGeer, P. L. (2001) Generation of C-reactive protein and complement components in atherosclerotic plaques. Am. J. Pathol. 158, 1039–1051.CrossRefGoogle Scholar
  29. 29.
    Ying, S. C., Gewurz, H., Kinoshita, C. M., Potempa, L. A., Siegel, J. N. (1989) Identification and partial characterization of multiple native and neoantigenic epitopes of human C-reactive protein by using monoclonal antibodies. J. Immunol. 143, 221–228.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2014

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ping Shi
    • 1
  • Xiao-Xin Li
    • 1
  • Wei Zhu
    • 1
  • Hong Yang
    • 1
  • Chi Dong
    • 1
  • Xiao-Ming Li
    • 1
    Email author
  1. 1.The Second Hospital of Lanzhou UniversityLanzhouPR China

Personalised recommendations