Effect of Polyethylene Glycol Induced Drought Stress on Photosynthesis in Two Chickpea Genotypes with Different Drought Tolerance

Abstract

Responses of parameters related with photosynthesis and the involvement of various factors in photosynthetic damage in two chickpea genotypes, Gokce (tolerant) and Kusmen (sensitive) under drought stress were assessed. Photosynthetic pigment content decreased under drought stress in two genotypes. Signifcant decreases in gs, Pn and E were determined in Kusmen. No signifcant change in these parameters was measured in Gokce under drought stress. Fv/Fm, ΦPS2 and ETR decreased in drought stressed plants of Kusmen as compared to control plants however Fv/Fm, ΦPS2 and ETR did not change in Gokce under drought stress. Increases in NPQ were determined under stress in both genotypes. Drought stress did not affect rubisco activity and rubisco concentration in Gokce while, the activity and the content declined in Kusmen. The drought tolerance of the Gokce genotype is a consequence of a balance among leaf water potential, stomatal conductance, photosynthesis, and transpiration. On the other hand, photosynthesis in Kusmen may be not only restricted by stomatal limitations but also by non-stomatal limitations under drought stress.

Abbreviations

ΦPS2:

Effective quantum yield of PS2 photochemistry

Fm:

Maximal fuorescence yield in dark-adapted state

Fm’:

Maximum Chl fuorescence yield in the light adapted state

Fv/Fm:

Maximum quan¬tum yield of PS2 photochemistry

Fo:

Minimal fuorescence yield in dark-adapted state

Pn:

Net photosynthetic rate

NPQ:

Non-photochemical quenching

gs:

Stomatal conductance

E:

Transpiration

References

  1. 1.

    Ahmed, S., Nawata, E., Hosokawa, M., Domae, Y., Sakuratani, T. (2002) Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163, 117–123.

    CAS  Article  Google Scholar 

  2. 2.

    Anonymous (2000) Turkish Republic Ministry of Agriculture and Rural Affairs. General Directorate of Agricultural Research, Center of Crop Plants Research Institute, Species Catalogue, Ankara, 31 p.

    Google Scholar 

  3. 3.

    Arnon, D. (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidases in Beta vulgaris. Plant Physiol. 24, 1–15.

    CAS  Article  Google Scholar 

  4. 4.

    Bayoumi, T. Y., Eid, M., Metwali, E. M. (2008) Application of physiological and biochemical indices as a screening technique for drought tolerance in wheat genotypes. Afr. J. Biotechnol. 7, 2341–2352.

    CAS  Google Scholar 

  5. 5.

    Blum, A., Ebercon, A. (1981) Cell membrane stability as a measure of drought and heat tolerance in wheat. Crop Sci. 21, 43–47.

    Article  Google Scholar 

  6. 6.

    Bradford, M. M. (1976) Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Google Scholar 

  7. 7.

    Dulai, S., Molnar, I., Pronay, J., Csernak, A., Tarnai, R., Molnar Lang, M. (2006) Effects of drought on photosynthetic parameters and heat stability of PSII in wheat and in Aegilops species originating from dry habitats. Acta Biol. Szeged. 50, 11–17.

    Google Scholar 

  8. 8.

    Duzdemir, O. (2011) Stability analysis for phenological characteristics in chickpea. Afr. J. Agric. Res. 6, 1682–1685.

    Google Scholar 

  9. 9.

    El Solh, M. (2011) Enhancing Food Security Under Water Scarcity: The Role of Science and Technology. The 2nd Arab Water Forum, Cairo, Egypt, 20–23 November, 2011.

    Google Scholar 

  10. 10.

    Genty, B., Briantais, J. M., Baker, N. R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92.

    CAS  Article  Google Scholar 

  11. 11.

    Güneş, A., Inal, A., Adak, M. S., Bagci, E. G., Cicek, N., Eraslan, F. (2008) Effect of drought stress implemented at pre- or postanthesis stage on some physiological parameters as screening criteria in chickpea cultivars. Russ. J. Plant Physiol. 55, 59–67.

    Article  Google Scholar 

  12. 12.

    Jaspars, E. M. J. (1965) Pigmentation of tobacco crown-gall tissues cultured in vitro in dependence of the composition of the medium. Physiol. Plant. 18, 933–940.

    CAS  Article  Google Scholar 

  13. 13.

    Khayatnezhad, M., Gholamin, R. (2012) The effect of drought stress on leaf chlorophyll content and stress resistance in maize cultivars (Zea mays). Afr. J. Microbiol. Res. 6, 2844–2848.

    CAS  Google Scholar 

  14. 14.

    Kholová, J., Hash, C. T., Kakkera, A., Kočová, M., Vadez, V. (2010) Constitutive water conserving mechanisms are correlated with the terminal drought tolerance of pearl millet (Pennisetum glaucum (L.) R. Br.). J. Exp. Bot. 61, 369–377.

    Article  Google Scholar 

  15. 15.

    Kholová, J., Hash, C. T., Lava Kumar P., Yadav, R. S., Kočová, M., Vadez, V. (2010) Terminal drought-tolerant pearl millet (Pennisetum glaucum (L.) R. Br.) have high leaf ABA and limit transpiration at high vapour pressure deficit. J. Exp. Bot. 61, 1431–1440.

    Article  Google Scholar 

  16. 16.

    Krouma, A. (2010) Plant water relations and photosynthetic activity in three Tunisian chickpea (Cicer arietinum L.) genotypes subjected to drought. Turk. J. Agric. For. 34, 257–264.

    CAS  Google Scholar 

  17. 17.

    Lal, A., Ku, M. S. B., Edwards, G. E. (1996) Analysis of inhibition of photosynthesis due to water stress in C3 species Hordeum vulgare and Vicia faba: Electron transport, CO2 fixation and carboxylation capacity. Photosynth. Res. 49, 57–69.

    CAS  Article  Google Scholar 

  18. 18.

    Liu, C., Liu, Y., Guo, K., Fan, D., Li, G., Zheng, Y., Yu, L., Yang, R. (2011) Effect of drought on pigments, osmotic adjustment and antioxidant enzymes in six woody plant species in karst habitats of southwestern China. Environ. Exp. Bot. 71, 174–183.

    CAS  Article  Google Scholar 

  19. 19.

    Ma, Z., Cooper, C., Kim, H. J., Janick-Buckner, D. (2009) A study of rubisco through western blotting and tissue printing techniques. CBE Life Sci. Educ. 8, 140–146.

    Article  Google Scholar 

  20. 20.

    Macar, K. T., Ekmekci, Y. (2008) PSII photochemistry and antioxidant responses of a chickpea variety exposed to drought. Z. Naturforsch. C 63, 583–594.

    CAS  Article  Google Scholar 

  21. 21.

    Macar, K. T., Ekmekci, Y. (2009) Alterations in photochemical and physiological activities of chickpea (Cicer arietinum L.) cultivars under drought stress. J. Agron. Crop Sci. 195, 335–346.

    CAS  Article  Google Scholar 

  22. 22.

    Mafakheri, A., Siosemardeh, A., Bahramnejad, B., Struik, P. C., Sohrabi, E. (2010) Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Aust. J. Crop Sci. 4, 580–585.

    CAS  Google Scholar 

  23. 23.

    Marques da Silva, J., Arrabica, M. C. (1995) Effect of water stress on Rubisco activity of Setaria sphacelota. In: Mathis, P. (ed.) Photosynthesis: From Light to Biosphere. Kluwer Academic Publishers, London, pp. 545–548.

    Google Scholar 

  24. 24.

    Mishra, K. B., Iannacone, R., Petrozza, A., Mishra, A., Armentano, N., La Vecchia, G., Trtílek, M., Cellini, F., Nedbal, L. (2012) Engineered drought tolerance in tomato plants is reflected in chlorophyll fluorescence emission. Plant Sci. 182, 79–86.

    CAS  Article  Google Scholar 

  25. 25.

    Nar, H., Saglam, A., Terzi, R., Varkonyi, Z., Kadioglu, A. (2009) Leaf rolling and photosystem II. Efficiency in Ctenanthe setosa exposed to drought stress. Photosynthetica 47, 429–436.

    CAS  Article  Google Scholar 

  26. 26.

    Pouresmael, M., Khavari-Nejad, R. A., Mozafari, J., Najafi, F., Moradi, F. (2013) Efficiency of screening criteria for drought tolerance in chickpea. Arch. Agron. Soil Sci. 59, 1675–1693.

    Google Scholar 

  27. 27.

    Rahbarian, R., Khavari-Nejad, R., Ganjeali, A., Bagheri, A., Najafi, F. (2011) Drought stress effects on photosynthesis, chlorophyll fluorescence and water relations in tolerant and susceptible chickpea (Cicer arietinum L.) genotypes. Acta Biol. Cracov. Bot. 53, 47–55.

    Google Scholar 

  28. 28.

    Roháček, K., Soukupová, J., Barták, M. (2008) Chlorophyll fluorescence: A wonderful tool to study plant physiology and plant stress. In: Schoefs, B. (ed.) Plant Cell Compartments–Selected Topics. Research Signpost, India, pp. 41–104.

    Google Scholar 

  29. 29.

    Sairam, P. K., Deshmukh, P. S., Shukla, D. S. (1997) Tolerance of drought and temperature stress in relation to increased antioxidant enzyme activity in wheat. J. Agron. Crop Sci. 178, 171–178.

    CAS  Article  Google Scholar 

  30. 30.

    Sawada, S. S., Sato, M., Kasai, A., Yaochi, D., Kameya, Y., Matsumoto, L., Kasai, D. (2003) Analysis of the feed-forward effects of sink activity on the photosynthetic source-sink balance in single-rooted sweet potato leaves. I. Activation of RuBPcase through the development of sinks. Plant Cell Physiol. 44, 190–197.

    Google Scholar 

  31. 31.

    Siddique, M. R. B., Hamid, A., Islam, M. S. (2000) Drought stress effects on water relations of wheat. Bot. Bull. Acad. Sin. 41, 35–39.

    Google Scholar 

  32. 32.

    Singh, R., Sharma, P., Varshney, R. K., Sharma, S. K., Singh, N. K. (2008) Chickpea improvement: Role of wild species and genetic markers. Biotechnol. Genet. Eng. 25, 267–314.

    CAS  Article  Google Scholar 

  33. 33.

    Slavick, B. (1974) Methods of Studying Plant Water Relations. Springer-Verlag, Berlin, p. 449.

    Book  Google Scholar 

  34. 34.

    Xu, Z. Z., Zhou, G. S., Wang, Y. L., Han, G. X., Li, Y. J. (2008) Changes in chlorophyll fluorescence in maize plants with imposed rapid dehydration at different leaf ages. J. Plant Growth Regul. 27, 83–92.

    CAS  Article  Google Scholar 

  35. 35.

    Yordanov, I., Tsonev, T., Velikova, V., Georgieva, K., Ivanov, P., Tsenov, N., Petrova, T. (2001) Changes in CO2 assimilation, transpiration and stomatal resistance of different wheat cultivars experiencing drought under field conditions. Bulg. J. Plant Physiol. 27, 20–33.

    Google Scholar 

  36. 36.

    Zaman-Allah, M., Jenkinson, D. M., Vadez, V. (2011) Chickpea genotypes contrasting for seed yield under terminal drought stress in the field differ for traits related to the control of water use. Funct. Plant. Biol. 38, 270–281.

    Article  Google Scholar 

  37. 37.

    Zlatev, Z. S., Yordanov, I. T. (2004) Effects of soil drought on photosynthesis and chlorophyll fluorescence in bean plants. Bulg. J. Plant Physiol. 30, 3–18.

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Saglam.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saglam, A., Terzi, R. & Demiralay, M. Effect of Polyethylene Glycol Induced Drought Stress on Photosynthesis in Two Chickpea Genotypes with Different Drought Tolerance. BIOLOGIA FUTURA 65, 178–188 (2014). https://doi.org/10.1556/ABiol.65.2014.2.6

Download citation

Keywords

  • Chickpea
  • chlorophyll fuorescence
  • drought
  • photosynthesis
  • rubisco