Effect of Electric Arc Furnace Slag on Growth and Physiology of Maize (Zea mays L.)

Abstract

Basic slag, used in this study as a potential source of certain nutrients, is a byproduct of the production of steel in electric arc furnace (EAF). A pot experiment with two nutrient-poor substrates was conducted to investigate to compare the effect of EAF steel slag and fertilizers NPK+ F e on growth and availability of specific nutrients to maize. Mineral content of both substrate and plant leaves, growth, chlorophyll fluorescence and photosynthetic pigments were measured following six weeks of cultivation. As steel slag also contains trace amounts of heavy metals, certain oxidative parameters (antioxidative enzyme activities and lipid peroxidation) were evaluated as well. The steel slag improved soil mineral composition, increased above ground maize biomass by providing Fe, Mn, Mg, K and partly P and improved photosynthetic parameters. The potential phytotoxicity of EAF slag containing substrates was not determined as evaluated by MDA (malondialdehyde), GR (glutathione reductase) and APX (ascorbate peroxidase) levels. The obtained results show that EAF steel slag is comparable to NPK+ F e in supplying nutrients for maize growth, indicating the potential of EAF steel slag as an inexpensive and non-phytotoxic nutrient supplier especially in poor soils.

References

  1. 1.

    Allen, S. E. (1974). Chemical Analysis of Ecological Materials. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  2. 2.

    Ali, M. T., Shahram, S. H. (2007) Converter slag as a liming agent in the amelioration of acidic soils. Int. J Agr. Biol. 9, 715–720.

    CAS  Google Scholar 

  3. 3.

    Baker, N. R., Rosenqvist, E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607–1621.

    CAS  Article  Google Scholar 

  4. 4.

    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254.

    CAS  Article  Google Scholar 

  5. 5.

    Branca, T. A., Colla, V. (2012) Possible uses of steelmaking slag in agriculture: an overview. In: Achilias, D. S. (ed.. Material recycling–Trends and Perspectives. In Tech, Rijeka, pp. 335–356.

    Google Scholar 

  6. 6.

    Eckhard, G., Horst, W., Neumann, E. (2012) Adaptation of plants to adverse chemical soil conditions. In: Marschner, P. (ed.). Marschner’s Mineral Nutrition of Higher Plants, 3rd edition. Academic Press, NY, pp. 409–472.

    Google Scholar 

  7. 7.

    Fageria, N. K. (2004) Dry matter yield and shoot nutrient concentrations of upland rice, common bean, corn, and soybean grown in rotation on an Oxisol. Comm. Soil Sci. Plant Anal. 35, 961–974.

    CAS  Article  Google Scholar 

  8. 8.

    Foyer, C. H., Souriau, N., Perret, S., Lelandais, M., Kunert, K. J., Pruvost, C., Jouanin, L. (1995) Overexpression of glutathione reductase but not glutathione synthetase leads to increases in antioxidant capacity and resistance to photoinhibition in poplar trees. Plant Physiol. 109, 1047–1057.

    CAS  Article  Google Scholar 

  9. 9.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I–Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.

    CAS  Article  Google Scholar 

  10. 10.

    Kristen, M., Erstad, K. J. (1996) Converter slag as a liming material on organic soils. Norwegian J. Agric. Sci. 10, 83–93.

    Google Scholar 

  11. 11.

    Kühn, M., Spiegel, H., Lopez, A. F., Rex, M., Erdmann, R. (2006). Sustainable agriculture using blast furnace and steel slags as liming agents. Publications Office of the European Communities, Luxembourg.

    Google Scholar 

  12. 12.

    Lichtenthaler, H. K. (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth. Enzymol. 148, 350–382.

    CAS  Article  Google Scholar 

  13. 13.

    Liu, M. D., Zhang, Y. L., Wang, Y. J., Yang, D. (2002) Effect of slag application on dynamic changes of pH, water-soluble silicon concentration in paddy soil and rice yield. Chinese J. Soil Sci. 33, 47–50.

    Google Scholar 

  14. 14.

    Maxwell, K., Johnson, G. N. (2000) Chlorophyll fluorescence: a practical guide. J. Exp. Bot. 51, 659–668.

    CAS  Article  Google Scholar 

  15. 15.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.

    CAS  Google Scholar 

  16. 16.

    Negim, O., Eloifi, B., Mench, M., Bes, C., Gaste, H., Montelica- Heino, M., Le Coustumer, P. (2010) Effect of basic slag addition on soil properties, growth and leaf mineral composition of beans in a Cu-contaminated soil. Soil Sediment Contam. 19, 174–187.

    CAS  Article  Google Scholar 

  17. 17.

    Norvell, W. A., Lindsay, W. L. (1982) Effect of ferric chloride additions on the solubility of ferric iron a near-neutral soil. J. Pl. Nutr. 5, 1285–1295.

    CAS  Article  Google Scholar 

  18. 18.

    Rastovčan-Mioč, A., Sofilić, T., Mioč, B. (2009) Application of electric arc furnace slag. In: Grilec, K., Marić, G. (ed.). Proccedings matrib Vela luka, island Korčula, Hrvatska 24–26. lipnja. Hrvatsko društvo za materijale i tribologiju, Zagreb, pp. 436–444.

    Google Scholar 

  19. 19.

    Römheld, V. (1987) Different strategies for iron acquisition in higher plants. Physiol. Plant. 70, 231–234.

    Article  Google Scholar 

  20. 20.

    Temminghoff, E. J. M., Houba, V. J. G. (2004). Plant Analysis Procedures. Kluwer Academic Publishers, Dordrecht.

    Book  Google Scholar 

  21. 21.

    Wang, X., Cai, Q.-S. (2006) Steel slag as an iron fertilizer for corn growth and soil improvement in a pot experiment. Pedospher. 16, 519–524.

    CAS  Article  Google Scholar 

  22. 22.

    Yang, D., Zhang, Y. L. (2005) Effect of applied blast furnace slags on pH and silicon in rice plant. J. Agro-Env. Sci. 24, 446–449.

    CAS  Google Scholar 

  23. 23.

    Yildirim, I. Z., Prezzi, M. (2011) Chemical, mineralogical, and morphological properties of steel slag. Adv. Civil Eng. 2011, 1–13.

    Article  Google Scholar 

Download references

Acknowledgements

This study has been funded by the Croatian Ministry of Science, Education and Sport, as part of Projects no. 119-1191196-1202. We are thankful to Dr. T. Sofilić for donation of EAF steel slag.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sandra Radić.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Radić, S., Crnojević, H., Sandev, D. et al. Effect of Electric Arc Furnace Slag on Growth and Physiology of Maize (Zea mays L.). BIOLOGIA FUTURA 64, 490–499 (2013). https://doi.org/10.1556/ABiol.64.2013.4.8

Download citation

Keywords

  • Steel slag
  • maize
  • oxidative stress
  • pytotoxicity
  • inorganic fertilizer