Advertisement

Acta Biologica Hungarica

, Volume 64, Issue 4, pp 462–475 | Cite as

Impact of Environmental and Genetic Factors on the Scale Shape of Zebrafish, Danio rerio (Hamilton 1822): A Geometric Morphometric Study

  • Á. Staszny
  • Enikő Havas
  • R. Kovács
  • B. Urbányi
  • G. Paulovits
  • Dóra Bencsik
  • Á. Ferincz
  • T. Müller
  • A. Specziár
  • Katalin Bakos
  • Zs. CsenkiEmail author
Article
  • 1 Downloads

Abstract

Intraspecific morphological variability may reflect either genetic divergence among groups of individuals or response of individuals to environmental circumstances within the frame of phenotypic plasticity. Several studies were able to discriminate wild fish populations based on their scale shape. Here we examine whether the variations in the scale shape in fish populations could be related to genetic or environmental factors, or to both of them. In the first experiment, two inbred lines of zebrafish, Danio rerio (Hamilton 1822) reared under identical environmental conditions were compared. Secondly, to find out what effect environmental factors might have, offsprings were divided into two groups and reared on different diets for 12 weeks. Potential recovery of scales from an environmental effect was also assessed. Experimental groups could successfully be distinguished according to the shape of scales in both experiments, and the results showed that both genetic and environmental factors may notably influence scale shape. It was concluded that scale shape analysis might be used as an explanatory tool to detect potential variability of environmental influences impacting genetically homogeneous groups of fish. However, due to its sensitivity to environmental heterogeneity, the applicability of this technique in identifying intraspecific stock membership of fish could be limited.

Keywords

Landmark-based geometric morphometrics phenotypic plasticity shape analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was financially supported by the research funding programme “KMOP-1.1.1-09/1-2009-0048” National Office for Research and Technology of Hungary, “Sustainable conservation on Hungarian Natura 2000 Sites-SH/4/8” Swiss Contribution to Hungary, “KMR-12-1-2012-0221” and Bolyai János research grant by the Hungarian Academy of Sciences - “BO/00054/12/4”.

References

  1. 1.
    Agüera, A., Brophy, D. (2011) Use of saggital otolith shape analysis to discriminate Northeast Atlantic and Western Mediterranean stocks of Atlantic saury. Scomberesox saurus saurus (Walbaum). Fish Res. 110, 465–471.CrossRefGoogle Scholar
  2. 2.
    Beacham, T. D. (1990) A genetic analysis of meristic and morphometric variation in chum salmo. (Oncorhynchus keta) at three different temperatures. Can. J. Zool. 68, 225–229.CrossRefGoogle Scholar
  3. 3.
    Brönmark, C., Miner, J. G. (1992) Predator-induced phenotypical change in body morphology in Crucian carp. Scienc. 258, 1348–1350.CrossRefGoogle Scholar
  4. 4.
    Currens, K. P., Sharpe, C. S., Hjort, R., Schreck, C. B., Li, H. W. (1989) Effects of different feeding regimes on the morphometrics of chinook salmo. (Oncorhynchus tshawytscha) and rainbow trou. (O. mykiss). Copei. 3, 689–695.CrossRefGoogle Scholar
  5. 5.
    Day, T., Pritchard, J., Schluter, D. (1994) A comparison of two sticklebacks. Evolutio. 48, 1723–1734.CrossRefGoogle Scholar
  6. 6.
    Ehrlich, K. F., Blaxter, J. H. S., Pemberton, R. (1976) Morphological and histological changes during the growth and starvation of herring and plaice larvae. Mar. Biol. 35, 105–118.CrossRefGoogle Scholar
  7. 7.
    Elmer, K. R., Kusche, H., Lehtonen, T. K., Meyer, A. (2010) Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 365, 1763–1782.CrossRefGoogle Scholar
  8. 8.
    Garduño-Paz, M. V., Demetriou, M., Adams, C. E. (2010) Variation in scale shape among alternative sympatric phenotypes of Arctic char. Salvelinus alpinus from two lakes in Scotland. J. Fish Biol. 76, 1491–1497.CrossRefGoogle Scholar
  9. 9.
    Georgakopoulou, E., Sfakianakis, D. G., Kouttouki, S., Divanach, P., Kentouri, M., Koumoundouros, G. (2007) The influence of temperature during early life on phenotypic expression at later ontogenetic stages in sea bass. J. Fish Biol. 70, 278–291.CrossRefGoogle Scholar
  10. 10.
    Ibáñez, A. L., Cowx, I. G., O’Higgins, P. (2007) Geometric morphometric analysis of fish scales for identifying genera, species, and local populations withi. Mugilidae. Can. J. Fish Aquat. Sci. 64, 1091–1100.CrossRefGoogle Scholar
  11. 11.
    Ibáñez, A. L., Cowx, I. G., O’Higgins, P. (2009) Variation in elasmoid fish scale patterns is informative with regard to taxon and swimming mode. Zool. J. Linn. Soc. 155, 834–844.CrossRefGoogle Scholar
  12. 12.
    Ibáñez, A. L., Pacheco-Almanzar, E., Cowx, I. G. (2012) Does compensatory growth modify fish scale shape. Environ. Biol. Fishe. 94, 477–482.CrossRefGoogle Scholar
  13. 13.
    Klingenberg, C. P. (2011) MorphoJ: an integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357.CrossRefGoogle Scholar
  14. 14.
    Lawrence, C. (2007) The husbandry of zebrafis. (Danio rerio): A review. Aquacultur. 269, 1–20.CrossRefGoogle Scholar
  15. 15.
    Leak, A. (1990) Cleaning archaeological fish scales. Circae. 6, 119–120.Google Scholar
  16. 16.
    Marcil, J., Swain, D. P., Hutchings, J. A. (2006) Genetic and environmental components of phenotypic variation in body shape among populations of Atlantic cod (Gadus morhua L.). Biol. J. Linn. Soc. Lond. 88, 351–365.CrossRefGoogle Scholar
  17. 17.
    Mérigot, B., Letourneur, Y., Lecomte-Finiger, R. (2007) Characterization of local populations of the common sol. Solea solea (Pisces, Soleidae) in the NW Mediterranean through otolith morphometrics and shape analysis. Mar. Biol. 151, 997–1008.CrossRefGoogle Scholar
  18. 18.
    Mittelbach, G. G., Osenberg, C. W., Wainwright, P. C. (1999) Variation in feeding morphology between pumpkinseed populations: Phenotypic plasticity or evolution. Evol. Ecol. Res. 1, 111–128.Google Scholar
  19. 19.
    Noga, E. J. (2010). Fish Disease–Diagnosis and Treatment Second Edition. Wiley-Blackwell, USA.CrossRefGoogle Scholar
  20. 20.
    Park, I.-S., Im, J. H., Ryu, D. K., Nam, Y. K., Kim, D. S. (2001) Effect of starvation on morphometric changes i. Rhynchocypris oxycephalus (Sauvage and Dabry). J. Appl. Ichthyol. 17, 277–281.CrossRefGoogle Scholar
  21. 21.
    Park, I.-S., Woo, S. R., Song, Y.-C., Cho, S. H. (2007) Effects of starvation on morphometric characteristics of olive flounder. Paralichthys olivaceus. Ichthyol. Res. 54, 297–302.CrossRefGoogle Scholar
  22. 22.
    Poulet, N., Reyjol, Y., Collier, H., Lek, S. (2005) Does fish scale morphology allow the identification of populations at a local scale? A case study for rostrum dac. Leuciscus leuciscus burdigalensis in River Viaur (SW France). Aquat. Sci. 67, 122–127.CrossRefGoogle Scholar
  23. 23.
    Richards, R. A., Esteves, C. (1997) Stock-specific variation in scale morphology of Atlantic striped bass. Trans. Am. Fish Soc. 126, 908–918.CrossRefGoogle Scholar
  24. 24.
    Richards, R. A., Esteves, C. (1997) Use of scale morphology for discriminating wild stocks of Atlantic striped bass. Trans. Am. Fish Soc. 126, 919–925.CrossRefGoogle Scholar
  25. 25.
    Ricker, W. E. (1975) Computation and interpretation of biological statistics of fish populations. Bull. Fish Res. Board. Can. 191, 1–382.Google Scholar
  26. 26.
    Rishi, K. K., Jain, M. (1998) Effect of toxicity of cadmium on scale morphology in Cyprinus carpio (Cyprinidae). Bull. Environ. Contam. Toxicol. 60, 323–328.CrossRefGoogle Scholar
  27. 27.
    Rohlf, F. J. (1990) Morphometrics. Annu. Rev. Ecol. Syst. 21, 299–316.CrossRefGoogle Scholar
  28. 28.
    Rohlf, F. J. (2010) tpsUtil, file utility program. version 1.46. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  29. 29.
    Rohlf, F. J. (2010) tpsDig2, digitize landmarks and outlines, version 2.16. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  30. 30.
    Slyke, N. V. (1998) A review of the analysis of fish remains in Chumash sites. Pac. Coast. Archaeol. Soc. Q. 34, 25–58.Google Scholar
  31. 31.
    Šumer, S., Kováč, V., Povž, M., Slatner, M. (2005) External morphology of a Slovenian population of pumpkinsee. Lepomis gibbosus (L.) from a habitat with extreme thermal conditions. J. Appl. Ichthyol. 21, 306–311.CrossRefGoogle Scholar
  32. 32.
    Theilacker, G. H. (1978) Effect of starvation on the histological and morphological characteristics of jack mackerel. Trachurus symmetricus, larvae. Fish Bull. 76, 403–414.Google Scholar
  33. 33.
    Verhaegen, Y., Adriaens, D., De Wolf, T., Dhert, P., Sorgeloos, P. (2007) Deformities in larval gilthead sea brea. (Sparus aurata): A qualitative and quantitative analysis using geometric morphometrics. Aquacultur. 268, 156–168.CrossRefGoogle Scholar
  34. 34.
    Yin, M. C., Blaxter, J. H. S. (1986) Morphological changes during growth and starvation of larval cod (Gadus morhua L.) and flounder (Platichthys flesus L.). J. Exp. Mar. Bio. Ecol. 104, 215–228.CrossRefGoogle Scholar
  35. 35.
    Yoshitomi, T., Koyama, J., Iida, A., Okamoto, N., Ikeda, Y. (1998) Cadmium-induced scale deformation in carp (Cyprinus carpio). Bull. Environ. Contam. Toxicol. 60, 639–644.CrossRefGoogle Scholar
  36. 36.
    Zelditch, M. L., Swiderski, D. L., Sheets, H. D., Fink, W. L. (2004). Geometric Morphometrics for Biologists: A Primer. Elsevier/Academic Press, Amsterdam.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Á. Staszny
    • 1
    • 3
  • Enikő Havas
    • 2
  • R. Kovács
    • 1
  • B. Urbányi
    • 1
  • G. Paulovits
    • 3
  • Dóra Bencsik
    • 1
  • Á. Ferincz
    • 4
  • T. Müller
    • 1
  • A. Specziár
    • 3
  • Katalin Bakos
    • 1
  • Zs. Csenki
    • 1
    Email author
  1. 1.Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Institute of Environmental & Landscape ManagementSzent István UniversityGödöllőHungary
  2. 2.Department of Zoology and Animal Ecology, Faculty of Agricultural and Environmental SciencesSzent István UniversityHungary
  3. 3.Centre for Ecological Research, Balaton Limnological InstituteHungarian Academy of SciencesTihanyHungary
  4. 4.Department of LimnologyUniversity of PannoniaVeszprémHungary

Personalised recommendations