Acta Biologica Hungarica

, Volume 64, Issue 3, pp 364–376 | Cite as

Phytohormone and Assimilate Profiles in Emasculated Flowers of the Black Locust (Robinia pseudoacacia) during Development

  • Peng Sun
  • Cunquan Yuan
  • Li Dai
  • Yang Xi
  • Yunfei Li
  • Ruiyang Hu
  • Yuhan Sun
  • Zhaohe Xu
  • Yun LiEmail author


Emasculation and bagging of flowers, which are widely used in the controlled pollination of monoclinous plants, may induce premature senescence, flower abscission and low fruit set. To determine the mechanism responsible for these phenomena, levels of abscisic acid (ABA), jasmonic acid (JA), indole-3-acetic acid (IAA), ethylene, soluble sugars, reducing sugars and free amino acids in black locust (Robinia pseudoacacia) flowers subjected to different treatments were quantified at different developmental stages. The phytohormones and assimilates were also quantified in untreated flowers to investigate the presence of discernible patterns. The levels of ethylene and ABA in emasculated and bagged (EB) flowers increased prematurely compared with those of untreated flowers, whereas the content of reducing sugars in EB flowers decreased compared with that of untreated flowers. These results indicated that the premature increase in ethylene and ABA synthesis, and the decrease in reducing sugars content, in EB flowers may cause flower abscission and result in low fruit set, which may be relevant for assimilate applications and future research on the regulation of controlled pollinations with exogenous phytohormones.


Robinia pseudoacacia emasculation controlled pollination flower senescence phytohormones and assimilates 



abscisic acid


emasculation and bagging


gas chromatographymass spectrometry


indole-3-acetic acid


jasmonic acid


response to injury induced by emasculation


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors thank the National Natural Science Foundation of China (31170629) for financial support, and Prof. Xiangning Jiang, Ms Huajun Chen and Miss Zhaolin Lv for technical assistance.


  1. 1.
    Borochov, A., Woodson, W. R. (1989) Physiology and biochemistry of flower petal senescence. Hortic. Rev. 11, 15–43.Google Scholar
  2. 2.
    Brown, S. K., Iezzoni, A. F., Fogle, H. W. (1996) Cherries. In: Janick, J., Moore, J. N. (eds.) Fruit Breeding, vol. I: Tree and Tropical Fruits. John Wiley & Sons, Inc., New York, pp. 213–255.Google Scholar
  3. 3.
    Chang, H., Jones, M. L., Banowetz, G. M., Clark, D. G. (2003) Overproduction of cytokinins in petunia flowers transformed with PSAG12-IPT delays corolla senescence and decreases sensitivity to ethylene. Plant Physiol. 132, 2174–2183.CrossRefGoogle Scholar
  4. 4.
    Dini-papanastasi, O., Aravanopoulos, F. A. (2008) Artificial hybridization between Robinia pseudoacacia L. and R. pseudoacacia var. monophylla Carr. Forestry 81, 91–101.CrossRefGoogle Scholar
  5. 5.
    Gilbart, D. A., Sink, K. C. (1971) Regulation of endogenous indoleacetic acid and keeping quality of poinsettia. J. Am. Soc. Hortic. Sci. 96, 3–7.Google Scholar
  6. 6.
    Guerra, M. E., Wünsch, A., Margarita, L. C., Rodrigo, J. (2010) Flower emasculation as the cause for lack of fruit set in Japanese plum crosses. J. Am. Soc. Hortic. Sci. 135, 556–562.CrossRefGoogle Scholar
  7. 7.
    Hedhly, A., Hormaza, J. I., Herrero, M. (2009) Flower emasculation accelerates ovule degeneration and reduces fruit set in sweet cherry. Sci. Hortic.-Amsterdam 119, 455–457.CrossRefGoogle Scholar
  8. 8.
    Hoeberichts, F. A., Van Doorn, W. G., Vorst, O., Hall, R.D., van Wordragen, M. F. (2007) Sucrose prevents upregulation of senescence-associated genes in carnation petals. J. Exp. Bot. 58, 2873–2885.CrossRefGoogle Scholar
  9. 9.
    Hunter, D. A., Ferrante, A., Vernieri P., Reid, M. (2004a) Role of abscisic-acid in perianth senescence of daffodil Narcissus pseudonarcissus “Dutch Master”. Physiol. Plantarum 121, 313–321.CrossRefGoogle Scholar
  10. 10.
    Hunter, D. A., Yi, M. F., Xu, X. J., Reid, M. S. (2004b) Role of ethylene in perianth senescence of daffodil (Narcissus pseudonarcissus L. ‘Dutch Master’). Postharvest Biol. Tec. 32, 269–280.CrossRefGoogle Scholar
  11. 11.
    Ichimura, K., Suto, K. (1998) Role of ethylene in acceleration of flower senescence by filament wounding in Portulaca hybrids. Physiol. Plantarum 104, 603–607.CrossRefGoogle Scholar
  12. 12.
    Joseph, H. R. (1955) The determination of sugar in blood and spinal fluid with anthrone reagent. J. Biol. Chem. 212, 335–343.Google Scholar
  13. 13.
    Keeler, H. L. (1900) Our Native Trees and How to Identify Them. Charles Scriber’s Sons, New York, pp. 97–102.Google Scholar
  14. 14.
    Koshita, Y., Takahara, T. (2004) Effect of water stress on flower-bud formation and plant hormone content of satsuma mandarin (Citrus unshiu Marc.). Sci. Hortic.-Amsterdam 99, 301–307.CrossRefGoogle Scholar
  15. 15.
    Layne, R. E. C. (1983) Hybridization. In: Moore, J. N., Janick, J. (eds.) Methods in Fruit Breeding. Purdue University Press, Lafayette, pp. 48–73.Google Scholar
  16. 16.
    Lee, Y. P., Takahashi, T. (1966) An improved colorimetric determination of amino acids with the use of ninhydrin. Anal. Biochem. 14, 71–77.CrossRefGoogle Scholar
  17. 17.
    Li, X., Qin, G., Chen, Z., Gu, H., Qu, L. J. (2008) A gain-of-function mutation of transcriptional factor PTL results in curly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Mol. Biol. 66, 315–327.CrossRefGoogle Scholar
  18. 18.
    Mayak, S., Dilley, D. R. (1976a) Regulation of senescence in carnation (Dianthus caryophyllus): effect of abscisic acid and carbon dioxide on ethylene production. Plant Physiol. 58, 663–665.CrossRefGoogle Scholar
  19. 19.
    Mayak, S., Dilley, D. (1976b) Effect of sucrose on response of cut carnation flowers to kinetin, ethylene and abscisic acid. J. Am. Soc. Hortic. Sci. 101, 583–585.Google Scholar
  20. 20.
    Okie, W. R., Weinberger, J. H. (1996) Plums. In: Janick, J., Moore, J. N. (eds). Fruit Breeding, vol. I: Tree and Tropical Fruits. John Wiley & Sons, Inc., New York, pp. 559–607.Google Scholar
  21. 21.
    O’Neill, S. D. (1997) Pollination regulation of flower development. Annu. Rev. Plant Phys. Plant Mol. Biol. 48, 547–574.CrossRefGoogle Scholar
  22. 22.
    Panavas, T., Walker, E., Rubinstein, B. (1998) Possible involvement of abscisic acid in senescence of daylily petals. J. Exp. Bot. 49, 1987–1997.CrossRefGoogle Scholar
  23. 23.
    Porat, R., Borochov, A., Halevy, A. H. (1993) Enhancement of petunia and dendrobium flower senescence by jasmonic acid methyl ester is via the promotion of ethylene production. Plant Growth Regul. 13, 297–301.CrossRefGoogle Scholar
  24. 24.
    Porat, R., Reiss, N., Atzorn, R., Halevy, A. H., Borochov, A. (1995) Examination of the possible involvement of lipoxygenase and jasmonates in pollination-induced senescence of Phalaenopsis and Dendrobium orchid flowers. Physiol. Plantarum 94, 205–210.CrossRefGoogle Scholar
  25. 25.
    Reid, M. S., Chen, J. C. (2007) Flower senescence. In: Gan, S. (ed.) Senescence Processes in Plants. (Series: Annual Plant Reviews, vol. 26) Blackwell Publishing, Oxford, pp. 256–277.CrossRefGoogle Scholar
  26. 26.
    Ren, Z., Li, Z., Miao, Q., Yang, Y., Deng, W., Hao, Y. (2011) The auxin receptor homologue in Solanum lycopersicum stimulates tomato fruit set and leaf morphogenesis. J. Exp. Bot. 62, 2815–2826.CrossRefGoogle Scholar
  27. 27.
    Robert-Seilaniantz, A., Navarro, L., Bari, R., Jones, J. D. G. (2007) Pathological hormone imbalances. Curr. Opin. Plant Biol. 10, 372–379.CrossRefGoogle Scholar
  28. 28.
    Scales, F. M. (1915) The determination of reducing sugars: a volumetric method for determining cuprous oxide without removal from fehling’s solution. J. Biol. Chem. 23, 81–87.Google Scholar
  29. 29.
    Sun, P., Dai, L., Hu, R. Y., Xi, Y., Li, Y. F., Yuan, C. Y., Sun, Y., Li, Y. (2012) Flowering characteristics and pollination and mating patterns of Robinia pseudoacacia. Journal of Northeast Forestry University 40, 6–11 [in Chinese, English abstract].Google Scholar
  30. 30.
    Ueda, J., Kato, J. (1980) Isolation and identification of a senescence-promoting substance from worm word (Artemisia absinthium L.). Plant Physiol. 66, 246–249.CrossRefGoogle Scholar
  31. 31.
    Villacorta, N. F., Fernandez, H., Prinsen, E., Bernad, P. L., Revill, M. A. (2008) Endogenous hormonal profiles in hop development. J. Plant Growth Regul. 27, 93–98.CrossRefGoogle Scholar
  32. 32.
    Woltering, E. J., Harren, F. (1989) Role of rostellum desiccation in emasculation-induced phenomena in orchid flowers. J. Exp. Bot. 40, 907–912.CrossRefGoogle Scholar
  33. 33.
    Zhang, G. J. (2010) Selection of superior clones for fodder and cultivation and utilization in Robinia Pseudoacacia [D]. Doctoral dissertation of Beijing Forestry University, Beijing, pp. 15–23 [in Chinese, English abstract].Google Scholar
  34. 34.
    Zhang, X. S., O’Neill, S. D. (1993) Ovary and gametophyte development are coordinately regulated by auxin and ethylene following pollination. Plant Cell 5, 403–418.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Peng Sun
    • 1
  • Cunquan Yuan
    • 1
  • Li Dai
    • 1
  • Yang Xi
    • 1
  • Yunfei Li
    • 1
  • Ruiyang Hu
    • 1
  • Yuhan Sun
    • 1
  • Zhaohe Xu
    • 1
  • Yun Li
    • 1
    Email author
  1. 1.National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of the Ministry of Education, College of Biological Sciences and TechnologyBeijing Forestry UniversityBeijingChina

Personalised recommendations