Acta Biologica Hungarica

, Volume 64, Issue 3, pp 352–363 | Cite as

Variability of Stomata and 45S and 5S rDNAs Loci Characteristics in two Species of Anthoxanthum genus: A. Aristatum and A. Odoratum (Poaceae)

  • Maria DrapikowskaEmail author
  • Karolina Susek
  • R. Hasterok
  • P. Szkudlarz
  • Z. Celka
  • B. Jackowiak


Diploid Anthoxanthum odoratum and tetraploid A. aristatum were compared with respect to stomatal guard cell lengths, and stomatal density at adaxial and abaxial surfaces of the lamina. Further, the genome size of both species was determined by flow cytometry, and the number as well as the chromosomal distribution of 5S and 45S rDNAs were examined using FISH with ribosomal DNA (rDNA) probes. The average length of stomatal guard cells in A. odoratum was shown to be greater than that for A. aristatum, but the ranges overlapped. Moreover, reduction in stomatal frequency was found at higher ploidy levels.The genome size was 6.863 pg/2C DNA for A. aristatum and 13.252 pg/2C DNA for A. odoratum. A. aristatum has four sites of 5S rDNA in its root-tip meristematic cells, whereas A. odoratum has six. Both species have six sites of 45S rDNA. Chromosomal localization of the rDNA varied, which suggests that chromosome rearrangements took place during Anthoxanthum genome evolution.


Ribosomal DNA chromosome rearrangements genome size FISH 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The authors are grateful to Dr Robert Palmer Jr. (NIDCR, Bethesda), for his helpful comments on the manuscript. We also thank Mrs Dorota Siwinska (University of Silesia, Katowice) for her technical assistance with flow cytometry. This study has been supported by the Polish Ministry of Science and Higher Education (research project no. N N303069034).


  1. 1.
    Altinkut, A., Raskina, O., Nevo, E., Belyayev, A. (2006) En/Spm-like transposons in Poaceae species: transposase sequence variability and chromosomal distribution. Cell. Mol. Biol. Lett. 11, 214–230.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Aryavand, A., Ehdaie, B., Tran, B., Waines, J. G. (2003) Stomatal frequency and size differentiate ploidy levels in Aegilops neglecta. Genet. Resour. Crop Evol. 50, 175–182.Google Scholar
  3. 3.
    Cai, Q., Zhang, D., Liu, Z. L., Wang, X. R. (2006) Chromosomal localization of 5S and 18S rDNA in five species of subgenus Strobus and their implications for genome evolution of Pinus. Ann. Bot. 97, 715–722.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Chung, M. C., Lee, Y. I., Cheng, Y. Y., Chou, Y. J., Lu, C. F. (2008) Chromosomal polymorphism of ribosomal genes in the genus Oryza. Theor. Appl. Genet. 116, 745–753.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Csurhes, S., Edwards, R. (1998) Potential Environmental Weeds in Australia: Candidate Species for Preventative Control. Biodiversity Group, Environment Australia, Canberra, Australia.Google Scholar
  6. 6.
    de Moraes, A. P., dos Santos Soares Filho, W., Guerra, M. (2007) Karyotype diversity and the origin of grapefruit. Chromosome Res. 15, 115–121.PubMedGoogle Scholar
  7. 7.
    Drapikowska, M., Celka, Z., Szkudlarz, P., Jackowiak, B. (2011) Zmienność morfologiczna populacji Anthoxanthum odoratum (Poaceae) na siedliskach o zróżnicowanym stopniu antropogenicznego przekształcenia. Frag. Flor. Geobot. Pol. 18, 281–293.Google Scholar
  8. 8.
    Drapikowska, M., Szkudlarz, P., Celka, Z., Pierscinska, J., Jackowiak, B. (2008) Preliminary results of the studies on morphological diversity of the lowland populations of species from the genus Anthoxanthum L. In: Kocarek, P., Plasek, V., Malachova, K., Cimalova, S. (eds.) Environmental Changes and Biological Assessment. Scripta Facultatis Rerum Naturalium Universitatis Ostraviensis, pp. 236–242.Google Scholar
  9. 9.
    Fransz, P., Armstrong, S., Alonso-Blanco, C., Fischer, T. C., Torres-Ruiz, R. A., Jones, G. (1998) Cytogenetics for the model system Arabidopsis thaliana. Plant J. 13, 867–876.PubMedGoogle Scholar
  10. 10.
    Gerlach, W.L., Dyer, T.A. (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucleic Acids Res. 8, 4851–4865.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Gill, N., Hans, C. S., Jackson, S. (2008) An overview of plant chromosome structure. Cytogenet. Genome Res. 120, 194–201.PubMedGoogle Scholar
  12. 12.
    Golczyk, H., Hasterok, R., Joachimiak, A. J. (2005) FISH-aimed karyotyping and characterization of Renner complexes in permanent heterozygote Rhoeo spathacea. Genome 48, 145–153.PubMedGoogle Scholar
  13. 13.
    Hajdera, I., Siwinska, D., Hasterok, R., Maluszynska, J. (2003) Molecular cytogenetic analysis of genome structure in Lupinus angustifolius and Lupinus cosentinii. Theor. Appl. Genet. 107, 988–996.PubMedGoogle Scholar
  14. 14.
    Hasterok, R., Draper, J., Jenkins, G. (2004) Laying the cytotaxonomic foundations of a new model grass, Brachypodium distachyon (L.) Beauv. Chromosome Res. 12, 397–403.PubMedGoogle Scholar
  15. 15.
    Hasterok, R., Langdon, T., Taylor, S., Jenkins, G. (2002) Combinatorial labelling of DNA probes enables multicolour fluorescence in situ hybridisation in plants. Folia Histochem. Cytobiol. 40, 319–323.PubMedGoogle Scholar
  16. 16.
    Hasterok, R., Jenkins, G., Langdon, T., Jones, R. N., Maluszynska, J. (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor. Appl. Genet. 103, 486–490.Google Scholar
  17. 17.
    Hasterok, R., Wolny, E., Kulak, S., Zdziechiewicz, A., Maluszynska, J., Heneen, W. K. (2005) Molecular cytogenetic analysis of Brassica rapa-Brassica oleracea var. alboglabra monosomic addition lines. Theor. Appl. Genet. 111, 196–205.PubMedGoogle Scholar
  18. 18.
    Hasterok, R., Wolny, E., Hosiawa, M., Kowalczyk, M., Kulak-Ksiazczyk, S., Ksiazczyk, T., Heneen, W. K., Maluszynska, J. (2006) Comparative analysis of rDNA distribution in chromosomes of various species of Brassicaceae. Ann. Bot. 97, 205–216.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Hultén, F., Fries, M. (1986) Atlas of North European Vascular Plants: North of the Tropic of Cancer. Koeltz Scientific Books, Koenigstein, Germany.Google Scholar
  20. 20.
    Jackowiak, B. (1999) Modele roślin synantropijnych i transgenicznych. Phytocoenosis 11, 3–16.Google Scholar
  21. 21.
    Jakob, S. S., Meister, A., Blattner, F. R. (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol. Biol. Evol. 21, 860–869.PubMedGoogle Scholar
  22. 22.
    Jenkins, G., Hasterok, R. (2007) BAC ‘landing’ on chromosomes of Brachypodium distachyon for comparative genome alignment. Nat. Protoc. 2, 88–98.PubMedGoogle Scholar
  23. 23.
    Joachimiak, A., Grabowska-Joachimiak, A. (2000) Stomatal cell length and ploidy level in four taxa belonging to the Phleum Sect. Phleum. Acta Biol. Cracov. Ser. Bot. 42, 103–107.Google Scholar
  24. 24.
    Jones, K. (1960) Chromosomes and the nature and origin of Anthoxanthum odoratum L. Chromosoma (Berl.) 15, 248–274.Google Scholar
  25. 25.
    Khazaei, H., Monneveux, P., Hongbo, S., Mohammady, S. (2010) Variation for stomatal characteristics and water use efficiency among diploid, tetraploid and hexaploid Iranian wheat landraces. Genet. Resour. Crop Evol. 57, 307–314.Google Scholar
  26. 26.
    Kovarik, A., Dadejova, M., Lim, Y. K., Chase, M. W., Clarkson, J. J., Knapp, S., Leitch, A. R. (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetics. Ann Bot. 101, 815–823.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lan, T., Albert, V. A. (2011) Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biol. 11, 126.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Latowski, K. (2005) Ecological-biological reasons and sources of the invasive propensity of Anthoxanthum aristatum Boiss. (Poaceae). Thaiszia 15, 143–152.Google Scholar
  29. 29.
    Lawniczak, A., Drapikowska, M., Celka, Z., Szkudlarz, P., Jackowiak, B. (2011) Response of Anthoxanthum odoratum and A. aristatum to the different habitat types and nutrient concentration in soil. Fresen. Environ. Bull. 20, 2465–2474.Google Scholar
  30. 30.
    Lim, K. Y., Matyasek, R., Lichtenstein, C. P., Leitch, A. R. (2000) Molecular cytogenetic analyses and phylogenetic studies in the Nicotiana section Tomentosae. Chromosoma 109, 245–258.PubMedGoogle Scholar
  31. 31.
    Linares, C., Gonzalez, J., Ferrer, E., Fominaya, A. (1996) The use of double fluorescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome 39, 535–542.PubMedGoogle Scholar
  32. 32.
    Liu, B., Davis, T. M. (2011) Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae). BMC Plant Biol. 11, 157.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Łomnicki, A. (2000) Wprowadzenie do statystyki dla przyrodników [Introduction to Statistics for Naturalist]. PWN, Warsaw, Poland (in Polish).Google Scholar
  34. 34.
    Mack, R. N. (2000) Assessing the extent, status, and dynamism of plant invasions: Current and emerging approaches. In: Mooney, H. A., Hobbs, R. J. (eds.) Invasive Species in a Changing World. Island. Press, Washington, DC, pp. 141–168.Google Scholar
  35. 35.
    Maluszynska, J., Juchimiuk, J., Wolny, E. (2003) Chromosomal aberrations in Crepis capillaris cells detected by FISH. Folia Histochem. Cytobiol. 41, 101–104.PubMedGoogle Scholar
  36. 36.
    Meusel, H., Jäger, E., Weinert, E. (1965) Vergleichende Chorologie der zentraleuropäischen Flora I. Gustav Fischer Verlag, Jena, Germany.Google Scholar
  37. 37.
    Mohammady, S., Khazaei, H., Reisi, F. (2007) The study of stomatal characteristics in Iranian wheat wild accessions and land races Wheat Info. Serv. 103, 5–12.Google Scholar
  38. 38.
    Morrison, D. F. (1990) Wielozmienna analiza statystyczna [Multivariate Statistical Methods]. PWN, Warsaw, Poland (in Polish).Google Scholar
  39. 39.
    Moscone, E. A., Klein, F., Lambrou, M., Fuchs, J., Schweizer, D. (1999) Quantitative karyotyping and dual-color FISH mapping of 5S and 18S-25S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42, 1224–1233.PubMedGoogle Scholar
  40. 40.
    Ohmido, N., Fukui, K., Kinoshita, T. (2010) Recent advances in rice genome and chromosome structure research by fluorescence in situ hybridization (FISH). Proc. Jpn. Acad. Ser. B Phys Biol. Sci. 86, 103–116.PubMedPubMedCentralGoogle Scholar
  41. 41.
    Pereira, M. P., Perez, G. E., Balbuena, E. S. (2007) European Sweet Vernal Grasses (Anthoxanthum: Poaceae, Pooideae, Aveneae): A morphometric taxonomical approach. System Bot. 32, 43–59.Google Scholar
  42. 42.
    Raina, S. N., Mukai, Y. (1999) Detection of a variable number of 18S-5.8S-26S and 5S ribosomal DNA loci by fluorescent in situ hybridization in diploid and tetraploid Arachis species. Genome 42, 52–59.Google Scholar
  43. 43.
    Raskina, O., Belyayev, A., Nevo, E. (2004) Activity of the En/Spm-like transposons in meiosis as a base for chromosome repatterning in a small, isolated, peripheral population of Aegilops speltoides Tausch. Chromosome Res. 12, 153–161.PubMedGoogle Scholar
  44. 44.
    Raskina, O., Barber, J. C., Nevo, E., Belyayev, A. (2008) Repetitive DNA and chromosomal rearrangements: speciation-related events in plant genomes. Cytogenet. Genome Res. 120, 351–357.PubMedGoogle Scholar
  45. 45.
    Rosato, M., Castro, M., Rossello, J. A. (2008) Relationships of the woody Medicago species (section Dendrotelis) assessed by molecular cytogenetic analyses. Ann. Bot. 102, 15–22.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Rostanski, A. (1996) Vernal-grasses (Anthoxanthum, Poaceae) in Poland. Frag. Flor. Geobot. Pol. 41, 513–520.Google Scholar
  47. 47.
    Royer, D. L. (2001) Somatal density and stomatal index as indicators in paleoadmospheric CO2 concentration. Rev. Paleobot. Palynol. 114, 1–28.Google Scholar
  48. 48.
    Taketa, S., Ando, H., Takeda, K., Ichii, M., von Bothmer, R. (2005) Ancestry of American polyploid Hordeum species with the I genome inferred from 5S and 18S-25S rDNA. Ann. Bot. 96, 23–33.PubMedPubMedCentralGoogle Scholar
  49. 49.
    Tokarska-Guzik, B. (2005) The Establishment and Spread of Alien Plant Species (Kenophytes) in the Flora of Poland. Wydawnictwo Uniwersytetu Śląskiego, Katowice.Google Scholar
  50. 50.
    Unfried, I., Gruendler, P. (1990) Nucleotide sequence of the 5.8S and 25S rRNA genes and of the internal transcribed spacers from Arabidopsis thaliana. Nucleic Acids Res. 18, 4011.PubMedPubMedCentralGoogle Scholar
  51. 51.
    Weider, L. J., Elser, J. J., Crease, T. J., Mateos, M., Cotner, J. B., Markow, T. A. (2005) The functional signifcance of ribosomal (r)DNA variation: impacts on the evolutionary ecology of organisms. Annu. Rev. Ecol. Evol. Syst. 36, 219–242.Google Scholar
  52. 52.
    Wolny, E., Hasterok, R. (2009) Comparative cytogenetic analysis of the genomes of the model grass Brachypodium distachyon and its close relatives. Ann. Bot. 104, 873–881.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Zajac, A., Zajac, M. (eds.) (2001) Distribution Atlas of Vascular Plants in Poland. Laboratory of Computer Chorology, Institute of Botany, Jagiellonian University, Cracow, Poland.Google Scholar
  54. 54.
    Zhang, J. (2003) Evolution by gene duplication: an update. Trends Ecol. Evol. 18, 292–298.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Maria Drapikowska
    • 1
    Email author
  • Karolina Susek
    • 2
  • R. Hasterok
    • 2
  • P. Szkudlarz
    • 3
  • Z. Celka
    • 3
  • B. Jackowiak
    • 3
  1. 1.Department of Ecology and Environmental ProtectionPoznań University of Life SciencesPoznańPoland
  2. 2.Department of Plant Anatomy and CytologyUniversity of SilesiaKatowicePoland
  3. 3.Department of Plant TaxonomyAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations