Oxidative Stress in Leaves of two Olive Cultivars Under Freezing Conditions


Olive is one of the most important cultivated Mediterranean plants. In order to determine the differences in frost resistance of two, two-year-old olive cultivars (Olea europaea cv. Leccino and cv. Oblica) growing on different types of nutrient substrates (soil and coconut fibres), the trees were exposed to low temperature (−5 °C) in the dark. It was shown that low temperature caused an increase in H2O2 concentration, level of lipid peroxidation and carbonyl protein content in both cultivars and on both nutrient substrates, respectively. The CAT and APX activities significantly varied depending on the cultivar, the nutrient substrate type and the time of exposure to low temperature. Cv. Oblica and cv. Leccino growing on coconut fibres showed a better antioxidative response to low temperature probably due to the higher nitrogen and phosphorus concentration established in this type of nutrient substrate. That positive antioxidative response determined on coconut fibres was more pronounced in leaves of cv. Leccino.


  1. 1.

    Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121–126.

    CAS  Article  Google Scholar 

  2. 2.

    Apostolova, P., Yordanova, R., Popova, L. (2008) Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen. Appl. Plant Physiol. 34, 281–294.

    CAS  Google Scholar 

  3. 3.

    Asada, K. (1992) Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant. 85, 235–241.

    CAS  Article  Google Scholar 

  4. 4.

    Bartolozzi, F., Fontanazza, G. (1999) Assessment of frost tolerance in olive (Olea europaea L.). Sci. Hort. 81, 309–319.

    Article  Google Scholar 

  5. 5.

    Beck, E. H., Heim, R., Hansen, J. (2004) Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29, 449–459.

    Article  Google Scholar 

  6. 6.

    Cakmak, I., Engels, C. (1999) Role of mineral nutrients in photosynthesis and yield formation. In: Rengel, Z. (ed.) Crop Nutrition.The Haworth Press, New York, pp. 141–168.

    Google Scholar 

  7. 7.

    Cansev, A., Gulen, H., Eris, A. (2009) Cold-hardiness of olive (Olea europaea L.) cultivars in coldacclimated and non-acclimated stages: seasonal alternation of antioxidative enzymes and dehydrinlike proteins. J. Agr. Sci. 147, 51–61.

    CAS  Article  Google Scholar 

  8. 8.

    Cansev, A., Gulen, H., Eris, A. (2011) The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Hort. Environ. Biotechnol. 52, 113–120.

    CAS  Article  Google Scholar 

  9. 9.

    Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu, M., Inzé, D., Van Camp, W. (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95, 5818–5823.

    CAS  Article  Google Scholar 

  10. 10.

    D’Angeli, S., Malhó, R., Altamura, M. M. (2003) Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Sci. 165, 1303–1313.

    Article  Google Scholar 

  11. 11.

    Dai, F., Huang, Y., Zhou, M., Zhang, G. (2009) The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biol. Plant. 53, 257–262.

    CAS  Article  Google Scholar 

  12. 12.

    Domenõ, I., Irigoyen, N., Muro, J. (2009) Evolution of organic matter and drainages in wood fibre and coconutfibre substrates. Sci. Hort. 122, 269–274.

    Article  Google Scholar 

  13. 13.

    Fernández, M., Marcos, C., Tapias, R., Ruiz, F., López, G. (2007) Nursery fertilisation affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. Cuttings. Ann. For. Sci. 64, 865–873.

    Article  Google Scholar 

  14. 14.

    Foyer, C. H., Lelandais, M., Kunert, K. J. (1994) Photooxidative stress in plants. Physiol. Plant. 92, 696–717.

    CAS  Article  Google Scholar 

  15. 15.

    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Hung, S. H., Yu, C. W., Lin, C. H. (2005) Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 46, 1–10.

    CAS  Google Scholar 

  17. 17.

    Janda, T., Szalai, G., Rios-Gonzales, K., Veisz, O., Páldi, E. (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164, 301–306.

    CAS  Article  Google Scholar 

  18. 18.

    Kingston-Smith, A. H., Foyer, C. H. (2000) Bundle sheath proteins are more sensitive to oxidative damage then those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J. Exp. Bot. 51, 123–130.

    CAS  Article  Google Scholar 

  19. 19.

    Kuźniak, E., Urbanek, H. (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol. Plant. 22, 195–203.

    Article  Google Scholar 

  20. 20.

    Landry, L. C., Pell, E. J. (1993) Modification of Rubisco and altered proteolytic activity in O3-stressed hybrid poplar (Populus maximowizii x trichocarpa). Plant Physiol. 101, 1355–1362.

    CAS  Article  Google Scholar 

  21. 21.

    Lee, J., Koo, N., Min, D. B. (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety 3, 21–33.

    CAS  Article  Google Scholar 

  22. 22.

    Lepeduš, H., Hoško, M., Žuna Pfeiffer, T., Skendrović Babojelić, M., Žanić, M., Cesar, V. (2010) Preliminary study on the photosynthetic performance in leaves of two olive cultivars. Period. Biol. 112, 259–261.

    Google Scholar 

  23. 23.

    Levine, R. L., Wehr, N., Williams, J. A., Stadtman, E. R., Shacter, E. (2000) Determination of carbonyl groups in oxidized proteins. In: Keyse, S. M. (ed.) Methods in Molecular Biology. Stress Response: Methods and Protocols. Riverview Drive, New Jersey, pp. 15–24.

    Google Scholar 

  24. 24.

    Liang, Y., Chen, H., Tang, M. J., Yang, P. F., Shen, S. H. (2007) Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics. Physiol. Plant. 131, 508–517.

    CAS  Article  Google Scholar 

  25. 25.

    Lukatkin, A. S. (2002) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russ. J. Plant Physiol. 49, 782–788.

    CAS  Article  Google Scholar 

  26. 26.

    Malhotra, R. S., Singh, K. B., Saxena, M. C. (1995) Effect of nitrogen fertilizer application on cold tolerance in chickpea. ICPN 2, 24–25.

    Google Scholar 

  27. 27.

    Mancuso, S. (2000) Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive tree (Olea europaea L.) plants. Plant Cell Environ. 23, 291–299.

    Article  Google Scholar 

  28. 28.

    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.

    CAS  Article  Google Scholar 

  29. 29.

    Mukherjee, S. P., Choudhuri, M. A. (1983) Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58, 166–170.

    CAS  Article  Google Scholar 

  30. 30.

    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.

    CAS  Google Scholar 

  31. 31.

    Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D. (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem. 42, 57–63.

    CAS  Article  Google Scholar 

  32. 32.

    Prasad, T. K. (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J. 10, 1017–1026.

    CAS  Article  Google Scholar 

  33. 33.

    Rikala, R., Repo, T. (1997) The effect of late summer fertilization on the frost hardening of secondyear Scots pine seedlings. New Forests 14, 33–44.

    Article  Google Scholar 

  34. 34.

    Schaberg, P. G., DeHayes, D. H., Hawley, G. J., Murakami, P. F., Strimbeck, G. R., McNulty, S. G. (2002) Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce. Can. J. For. Res. 32, 1351–1359.

    CAS  Article  Google Scholar 

  35. 35.

    Strand, M., Öquist, G. (1985) Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). I. Effects on the light-limited and light-saturated rates of CO2 assimilation. Physiol. Plant. 64, 425–430.

    CAS  Article  Google Scholar 

  36. 36.

    Strikić, F., Čmelik, Z., Šatović, Z., Perica, S. (2007) Morfološka raznolikost masline (Olea europaea L. sorte Oblica. Pomol. Croat. 13, 77–86.

    Google Scholar 

  37. 37.

    Tyler, N. J., Gusta, L. V., Fowler, D. B. (1981) The influence of nitrogen, phosphorus and potassium on the cold acclimation of winter wheat (Triticum aestivum L.). Can. J. Plant Sci. 61, 879–885.

    CAS  Article  Google Scholar 

  38. 38.

    Uchida, R. (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva, J. A., Uchida, R. (eds.) Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, pp. 31–55.

    Google Scholar 

  39. 39.

    Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D., Van Camp, W. (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16, 4806–4816.

    CAS  Article  Google Scholar 

  40. 40.

    Žuna Pfeiffer, T., Štolfa, I., Hoško, M., Žanić, M., Pavičić, N., Cesar, V., Lepeduš, H. (2010) Comparative study of leaf anatomy and certain biochemical traits in two olive cultivars. Agric. Conspec. Sci. 75, 91–97.

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ivna Štolfa.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Pfeiffer, T.Ž., Štolfa, I., Žanić, M. et al. Oxidative Stress in Leaves of two Olive Cultivars Under Freezing Conditions. BIOLOGIA FUTURA 64, 341–351 (2013). https://doi.org/10.1556/ABiol.64.2013.3.7

Download citation


  • Low temperature
  • soil
  • coconut fibres
  • antioxidative enzymes
  • olive