Acta Biologica Hungarica

, Volume 64, Issue 3, pp 341–351 | Cite as

Oxidative Stress in Leaves of two Olive Cultivars Under Freezing Conditions

  • Tanja Žuna Pfeiffer
  • Ivna ŠtolfaEmail author
  • M. Žanić
  • N. Pavičić
  • Vera Cesar
  • H. Lepeduš


Olive is one of the most important cultivated Mediterranean plants. In order to determine the differences in frost resistance of two, two-year-old olive cultivars (Olea europaea cv. Leccino and cv. Oblica) growing on different types of nutrient substrates (soil and coconut fibres), the trees were exposed to low temperature (−5 °C) in the dark. It was shown that low temperature caused an increase in H2O2 concentration, level of lipid peroxidation and carbonyl protein content in both cultivars and on both nutrient substrates, respectively. The CAT and APX activities significantly varied depending on the cultivar, the nutrient substrate type and the time of exposure to low temperature. Cv. Oblica and cv. Leccino growing on coconut fibres showed a better antioxidative response to low temperature probably due to the higher nitrogen and phosphorus concentration established in this type of nutrient substrate. That positive antioxidative response determined on coconut fibres was more pronounced in leaves of cv. Leccino.


Low temperature soil coconut fibres antioxidative enzymes olive 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aebi, H. (1984) Catalase in vitro. Methods Enzymol. 105, 121–126.CrossRefGoogle Scholar
  2. 2.
    Apostolova, P., Yordanova, R., Popova, L. (2008) Response of antioxidative defence system to low temperature stress in two wheat cultivars. Gen. Appl. Plant Physiol. 34, 281–294.Google Scholar
  3. 3.
    Asada, K. (1992) Ascorbate peroxidase - a hydrogen peroxide scavenging enzyme in plants. Physiol. Plant. 85, 235–241.CrossRefGoogle Scholar
  4. 4.
    Bartolozzi, F., Fontanazza, G. (1999) Assessment of frost tolerance in olive (Olea europaea L.). Sci. Hort. 81, 309–319.CrossRefGoogle Scholar
  5. 5.
    Beck, E. H., Heim, R., Hansen, J. (2004) Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 29, 449–459.CrossRefGoogle Scholar
  6. 6.
    Cakmak, I., Engels, C. (1999) Role of mineral nutrients in photosynthesis and yield formation. In: Rengel, Z. (ed.) Crop Nutrition.The Haworth Press, New York, pp. 141–168.Google Scholar
  7. 7.
    Cansev, A., Gulen, H., Eris, A. (2009) Cold-hardiness of olive (Olea europaea L.) cultivars in coldacclimated and non-acclimated stages: seasonal alternation of antioxidative enzymes and dehydrinlike proteins. J. Agr. Sci. 147, 51–61.CrossRefGoogle Scholar
  8. 8.
    Cansev, A., Gulen, H., Eris, A. (2011) The activities of catalase and ascorbate peroxidase in olive (Olea europaea L. cv. Gemlik) under low temperature stress. Hort. Environ. Biotechnol. 52, 113–120.CrossRefGoogle Scholar
  9. 9.
    Chamnongpol, S., Willekens, H., Moeder, W., Langebartels, C., Sandermann, H. Jr., Van Montagu, M., Inzé, D., Van Camp, W. (1998) Defense activation and enhanced pathogen tolerance induced by H2O2 in transgenic tobacco. Proc. Natl. Acad. Sci. USA 95, 5818–5823.CrossRefGoogle Scholar
  10. 10.
    D’Angeli, S., Malhó, R., Altamura, M. M. (2003) Low-temperature sensing in olive tree: calcium signalling and cold acclimation. Plant Sci. 165, 1303–1313.CrossRefGoogle Scholar
  11. 11.
    Dai, F., Huang, Y., Zhou, M., Zhang, G. (2009) The influence of cold acclimation on antioxidative enzymes and antioxidants in sensitive and tolerant barley cultivars. Biol. Plant. 53, 257–262.CrossRefGoogle Scholar
  12. 12.
    Domenõ, I., Irigoyen, N., Muro, J. (2009) Evolution of organic matter and drainages in wood fibre and coconutfibre substrates. Sci. Hort. 122, 269–274.CrossRefGoogle Scholar
  13. 13.
    Fernández, M., Marcos, C., Tapias, R., Ruiz, F., López, G. (2007) Nursery fertilisation affects the frost-tolerance and plant quality of Eucalyptus globulus Labill. Cuttings. Ann. For. Sci. 64, 865–873.CrossRefGoogle Scholar
  14. 14.
    Foyer, C. H., Lelandais, M., Kunert, K. J. (1994) Photooxidative stress in plants. Physiol. Plant. 92, 696–717.CrossRefGoogle Scholar
  15. 15.
    Heath, R. L., Packer, L. (1968) Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125, 189–198.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Hung, S. H., Yu, C. W., Lin, C. H. (2005) Hydrogen peroxide functions as a stress signal in plants. Bot. Bull. Acad. Sin. 46, 1–10.Google Scholar
  17. 17.
    Janda, T., Szalai, G., Rios-Gonzales, K., Veisz, O., Páldi, E. (2003) Comparative study of frost tolerance and antioxidant activity in cereals. Plant Sci. 164, 301–306.CrossRefGoogle Scholar
  18. 18.
    Kingston-Smith, A. H., Foyer, C. H. (2000) Bundle sheath proteins are more sensitive to oxidative damage then those of the mesophyll in maize leaves exposed to paraquat or low temperatures. J. Exp. Bot. 51, 123–130.CrossRefGoogle Scholar
  19. 19.
    Kuźniak, E., Urbanek, H. (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol. Plant. 22, 195–203.CrossRefGoogle Scholar
  20. 20.
    Landry, L. C., Pell, E. J. (1993) Modification of Rubisco and altered proteolytic activity in O3-stressed hybrid poplar (Populus maximowizii x trichocarpa). Plant Physiol. 101, 1355–1362.CrossRefGoogle Scholar
  21. 21.
    Lee, J., Koo, N., Min, D. B. (2004) Reactive oxygen species, aging, and antioxidative nutraceuticals. Comprehensive Reviews in Food Science and Food Safety 3, 21–33.CrossRefGoogle Scholar
  22. 22.
    Lepeduš, H., Hoško, M., Žuna Pfeiffer, T., Skendrović Babojelić, M., Žanić, M., Cesar, V. (2010) Preliminary study on the photosynthetic performance in leaves of two olive cultivars. Period. Biol. 112, 259–261.Google Scholar
  23. 23.
    Levine, R. L., Wehr, N., Williams, J. A., Stadtman, E. R., Shacter, E. (2000) Determination of carbonyl groups in oxidized proteins. In: Keyse, S. M. (ed.) Methods in Molecular Biology. Stress Response: Methods and Protocols. Riverview Drive, New Jersey, pp. 15–24.CrossRefGoogle Scholar
  24. 24.
    Liang, Y., Chen, H., Tang, M. J., Yang, P. F., Shen, S. H. (2007) Responses of Jatropha curcas seedlings to cold stress: photosynthesis-related proteins and chlorophyll fluorescence characteristics. Physiol. Plant. 131, 508–517.CrossRefGoogle Scholar
  25. 25.
    Lukatkin, A. S. (2002) Contribution of oxidative stress to the development of cold-induced damage to leaves of chilling-sensitive plants: 2. The activity of antioxidant enzymes during plant chilling. Russ. J. Plant Physiol. 49, 782–788.CrossRefGoogle Scholar
  26. 26.
    Malhotra, R. S., Singh, K. B., Saxena, M. C. (1995) Effect of nitrogen fertilizer application on cold tolerance in chickpea. ICPN 2, 24–25.Google Scholar
  27. 27.
    Mancuso, S. (2000) Electrical resistance changes during exposure to low temperature measure chilling and freezing tolerance in olive tree (Olea europaea L.) plants. Plant Cell Environ. 23, 291–299.CrossRefGoogle Scholar
  28. 28.
    Mittler, R. (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7, 405–410.CrossRefGoogle Scholar
  29. 29.
    Mukherjee, S. P., Choudhuri, M. A. (1983) Implications of water stress-induced changes in the level of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol. Plant. 58, 166–170.CrossRefGoogle Scholar
  30. 30.
    Nakano, Y., Asada, K. (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880.Google Scholar
  31. 31.
    Parvanova, D., Ivanov, S., Konstantinova, T., Karanov, E., Atanassov, A., Tsvetkov, T., Alexieva, V., Djilianov, D. (2004) Transgenic tobacco plants accumulating osmolytes show reduced oxidative damage under freezing stress. Plant Physiol. Biochem. 42, 57–63.CrossRefGoogle Scholar
  32. 32.
    Prasad, T. K. (1996) Mechanisms of chilling-induced oxidative stress injury and tolerance in developing maize seedlings: changes in antioxidant system, oxidation of proteins and lipids, and protease activities. Plant J. 10, 1017–1026.CrossRefGoogle Scholar
  33. 33.
    Rikala, R., Repo, T. (1997) The effect of late summer fertilization on the frost hardening of secondyear Scots pine seedlings. New Forests 14, 33–44.CrossRefGoogle Scholar
  34. 34.
    Schaberg, P. G., DeHayes, D. H., Hawley, G. J., Murakami, P. F., Strimbeck, G. R., McNulty, S. G. (2002) Effects of chronic N fertilization on foliar membranes, cold tolerance, and carbon storage in montane red spruce. Can. J. For. Res. 32, 1351–1359.CrossRefGoogle Scholar
  35. 35.
    Strand, M., Öquist, G. (1985) Inhibition of photosynthesis by freezing temperatures and high light levels in cold-acclimated seedlings of Scots pine (Pinus sylvestris). I. Effects on the light-limited and light-saturated rates of CO2 assimilation. Physiol. Plant. 64, 425–430.CrossRefGoogle Scholar
  36. 36.
    Strikić, F., Čmelik, Z., Šatović, Z., Perica, S. (2007) Morfološka raznolikost masline (Olea europaea L. sorte Oblica. Pomol. Croat. 13, 77–86.Google Scholar
  37. 37.
    Tyler, N. J., Gusta, L. V., Fowler, D. B. (1981) The influence of nitrogen, phosphorus and potassium on the cold acclimation of winter wheat (Triticum aestivum L.). Can. J. Plant Sci. 61, 879–885.CrossRefGoogle Scholar
  38. 38.
    Uchida, R. (2000) Essential nutrients for plant growth: nutrient functions and deficiency symptoms. In: Silva, J. A., Uchida, R. (eds.) Plant Nutrient Management in Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture. College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, pp. 31–55.Google Scholar
  39. 39.
    Willekens, H., Chamnongpol, S., Davey, M., Schraudner, M., Langebartels, C., Van Montagu, M., Inzé, D., Van Camp, W. (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J. 16, 4806–4816.CrossRefGoogle Scholar
  40. 40.
    Žuna Pfeiffer, T., Štolfa, I., Hoško, M., Žanić, M., Pavičić, N., Cesar, V., Lepeduš, H. (2010) Comparative study of leaf anatomy and certain biochemical traits in two olive cultivars. Agric. Conspec. Sci. 75, 91–97.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2013

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Tanja Žuna Pfeiffer
    • 1
  • Ivna Štolfa
    • 1
    Email author
  • M. Žanić
    • 2
  • N. Pavičić
    • 3
  • Vera Cesar
    • 1
  • H. Lepeduš
    • 4
  1. 1.Department of BiologyUniversity of J. J. Strossmayer in Osijek, Cara Hadrijana 8/AOsijekCroatia
  2. 2.Geront d.o.o., Franje Tuđmana bbKaštel NoviCroatia
  3. 3.Department of Pomology, Faculty of AgricultureUniversity in ZagrebZagrebCroatia
  4. 4.Agricultural Institute OsijekOsijekCroatia

Personalised recommendations