Advertisement

Acta Biologica Hungarica

, Volume 63, Supplement 2, pp 221–229 | Cite as

Innervation of Bivalve Larval Catch Muscles by Serotonergic and FMRFamidergic Neurons

  • V. DyachukEmail author
  • A. Wanninger
  • Elena E. Voronezhskaya
Article

Abstract

Bivalve larvae use catch muscles for rapid shell closure and maintenance of the closed condition. We used specific antibodies against the muscle proteins together with phalloidin and neuronal markers, FMRFamide and serotonin (5-HT), to analyze mutual distribution of muscle and neuronal elements in larvae of the mussel, Mytilus trossulus, and the oyster, Crassostrea gigas. At trochophore and early veliger stages no anatomical connections between muscular and nervous system were detected. By the pediveliger stage the 5-HT innervation of the anterior adductor developed in oyster only, while rich FMRFa innervation of the adductor muscles developed in both species. Possible roles and mechanisms of FMRFamide and serotonin in the regulation of the catch state are discussed.

Keywords

Nervous system Mollusca development neurotransmitter muscle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Achazi, R. K., Dölling, B., Haakshorst, R. (1974) 5-Ht-induced relaxation and cyclic AMP in a molluscan smooth muscle (author’s transl). Pflügers Arch. 349, 19–27.CrossRefGoogle Scholar
  2. 2.
    Atnöder, A., Haszprunar, G. (2008) Larval morphology of the brooding clam Lasaea adansonii (Gmelin, 1791) (Bivalvia, Heterodonta, Galeommatoidea). J. Morphol. 269, 762–774.CrossRefGoogle Scholar
  3. 3.
    Austin, T., Weiss, S., Lukowiak, K. (1983) FMRFamide effects on spontaneous and induced contractions of the anterior gizzard in Aplysia. Can. J. Physiol. Pharmacol. 61, 949–953.CrossRefGoogle Scholar
  4. 4.
    Bayne, B. L. (1976) The biology of mussel larvae. In: Bayne, B. L. (ed.) Marine Mussels: Their Ecology and Physiology. Cambridge University Press, Cambridge, pp. 81–120.Google Scholar
  5. 5.
    Butler, T. M., Narayan, S. R., Mooers, S. U., Hartshorne, D. J., Siegman, M. J. (2001) The myosin cross-bridge cycle and its control by twitchin phosphorylation in catch muscle. Biophys. J. 80, 415–426.CrossRefGoogle Scholar
  6. 6.
    Cragg, S. M. (1985) The adductor and retractor muscles of the veliger of Pecten-maximus (L) (Bivalvia). J. Molluscan Stud. 51, 276–283.Google Scholar
  7. 7.
    Cragg, S. M., Crisp, D. J. (1991) The biology of scallop larvae. In: Shumway, S. E. (ed.) Biology, Ecology and Aquaculture of Scallops. Elsevier, Amsterdam, pp. 75–132.Google Scholar
  8. 8.
    Cragg, S. M. (1996) The Phylogenetic significance of some anatomical features of bivalve veliger larvae. In: Taylor, G. L. (ed.) Origin and Evolutionary Radiation of the Mollusca. Oxford Univ. Press, Oxford, pp. 371–380.Google Scholar
  9. 9.
    Dyachuk, V. A., Odintsova, N. A. (2009) Development of the larval muscle system in the mussel Mytilus trossulus (Mollusca, Bivalvia) Develop. Growth Differ. 51, 69–79.CrossRefGoogle Scholar
  10. 10.
    Flyachinskaya, L. P., Kulakovsky, E. Y. (1991) Larval development of Mytilus edulis (Mytilida, Mytilidae). Zool. Zhurnal. 70, 23–29. (In Russian)Google Scholar
  11. 11.
    Higgins, W. J., Price, D. A., Greenberg, M. J. (1978) FMRFamide increases the adenylate cyclase activity and cyclic AMP level of molluscan heart. E. J. Pharmacol. 48, 425–430.CrossRefGoogle Scholar
  12. 12.
    Hoyle, G. (1964) Muscle and neuromuscular physiology. In: Wilburand, K. M., Yonge, C. M. (eds) Physiology of Mollusca. Academic Press, New York, pp. 313–346.CrossRefGoogle Scholar
  13. 13.
    Ishii, N., Simpson, A. W. M., Ashley, C. C. (1989) Free calcium at rest during catch in single smoothmuscle cells. Science 243, 1367–1368.CrossRefGoogle Scholar
  14. 14.
    Johnson, W. H., Twarog, B. M. (1960) The basis for prolonged contractions in molluscan muscles. J. Gen. Physiol. 43, 941–960.CrossRefGoogle Scholar
  15. 15.
    Painter, S. D., Greenberg, M. J. (1982) A survey of the responses of bivalve hearts to the molluscan neuropeptide FMRFamide and to 5-hydroxytryptamine. Biol. Bull. 162, 311–332.CrossRefGoogle Scholar
  16. 16.
    Painter, S. D. (1982) FMRFamide inhibition of a molluscan heart is accompanied by increases in CAMP. Neuropeptides 3, 19–27.CrossRefGoogle Scholar
  17. 17.
    Price, D. A., Greenberg, M. J. (1980) The pharmacology of the molluscan cardioexcitatory neuropeptide FMRFamide. Gen. Pharmacol. 11, 237–241.CrossRefGoogle Scholar
  18. 18.
    Ruegg, J. C. (1971) Smooth muscle tone. Physiol. Rev. 51, 201–248.CrossRefGoogle Scholar
  19. 19.
    Saucedo P. E., Southgate, P. C. (2008) Reproduction, Development and Growth. In: Southgate, P. C., Lucas, J. (eds) The Pearl Oyster. Elsevier, London, pp. 131–186.CrossRefGoogle Scholar
  20. 20.
    Siegman, M. J., Mooers, S. U., Li, C., Narayan, S., Trinkle-Mulcahy, L., Watabe, S., Hartshorne, D. J., Butler, T. M. (1997) Phosphorylation of a high molecular weight (approximately 600 kDa) protein regulates catch in invertebrate smooth muscle. J. Muscle Res. Cell Motil. 18, 655–670.CrossRefGoogle Scholar
  21. 21.
    Siegman, M. J., Funabara, D., Kinoshita, S., Watabe, S., Hartshorne, D. J., Butler, T. M. (1998) Phosphorylation of a twitchin-related protein controls catch and calcium sensitivity of force production in invertebrate smooth muscle. Proc. Natl. Acad. Sci. USA 95, 5383–5388.CrossRefGoogle Scholar
  22. 22.
    Twarog, B. M. (1954) Responses of a molluscan smooth muscle to acetylcholine and 5-hydroxytryptamine. J. Cell. Physiol. 44, 141–163.CrossRefGoogle Scholar
  23. 23.
    Twarog, B. M. (1960) Innervation and activity of a molluscan smooth muscle. J. Physiol. 152, 220–235.CrossRefGoogle Scholar
  24. 24.
    Voronezhskaya, E. E., Nezlin, L. P., Odintsova, N. A., Plummer, J. T., Croll, R. P. (2008) Neuronal development in larval mussel Mytilus trossulus (Mollusca: Bivalvia). Zoomorphology 127, 97–110.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • V. Dyachuk
    • 1
    Email author
  • A. Wanninger
    • 2
  • Elena E. Voronezhskaya
    • 3
  1. 1.A. V. Zhirmunsky Institute of Marine BiologyFar Eastern Branch of Russian Academy of SciencesRussia
  2. 2.Department of Integrative Zoology, Faculty of Life SciencesUniversity of ViennaViennaAustria
  3. 3.Department of Comparative Physiology, Institute of Developmental BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations