Advertisement

Acta Biologica Hungarica

, Volume 63, Supplement 2, pp 194–201 | Cite as

Insulin and Memory in Lymnaea

  • E. ItoEmail author
  • R. Okada
  • Yuki Sakamoto
  • Emi Otshuka
  • K. Mita
  • Akiko Okuta
  • H. Sunada
  • M. Sakakibara
Article

Abstract

The pond snail, Lymnaea stagnalis, is capable of learning conditioned taste aversion (CTA) and consolidating this CTA into long-term memory (LTM). The DNA microarray experiments showed that some of molluscan insulin-related peptides (MIPs) were up-regulated in snails exhibiting CTA-LTM. On the other hand, the electrophysiological experiments showed that application of secretions from the MIPscontaining cells evoked long-term potentiation (LTP) at the synapses between the cerebral giant cell (a key interneuron for CTA) and the B1 motoneuron (a buccal motoneuron). We thus hypothesized that MIPs and MIP receptors play an important role at the synapses, probably underlying the CTA-LTM consolidation process. To examine this hypothesis, we applied the antibody, which recognizes the binding site of mammalian insulin receptors and is thought to cross-react MIP receptors, to the Lymnaea CNS. Our present data showed that an application of the antibody for insulin receptors to the isolated CNS blocked LTP, and that an injection of the antibody into the Lymnaea abdominal cavity inhibited LTM consolidation, but not CTA formation.

Keywords

Conditioned taste aversion insulin long-term potentiation long-term memory mollusc 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Azami, S., Wagatsuma, A., Sadamoto, H., Hatakeyama, D., Usami, T., Fujie, M., Koyanagi, R., Azumi, K., Fujito, Y., Lukowiak, K., Ito, E. (2006) Altered gene activity correlated with long-term memory formation of conditioned taste aversion in Lymnaea. J. Neurosci. Res. 84, 1610–1620.CrossRefGoogle Scholar
  2. 2.
    Benjamin, P. R., Rose, R. M., Slade, C. T., Lacy, M. G. (1979) Morphology of identified neurones in the buccal ganglia of Lymnaea stagnalis. J. Exp. Biol. 80, 119–135.Google Scholar
  3. 3.
    Elliott, C. J., Vehovszky, A. (2000) Comparative pharmacology of feeding in molluscs. Acta Biol. Hung. 51, 153–163.PubMedGoogle Scholar
  4. 4.
    Hajali, V., Mohaddes, G., Babri, S. H. (2009) Intracerebroventricular insulin improves spatial learning and memory in male Wistar rats. Behav. Neurosci. 123, 1309–1314.CrossRefGoogle Scholar
  5. 5.
    Ito, E., Kobayashi, S., Kojima, S., Sadamoto, H., Hatakeyama, D. (1999) Associative learning in the pond snail, Lymnaea stagnalis. Zool. Sci. 16, 711–723.CrossRefGoogle Scholar
  6. 6.
    Jonas, E. A., Knox, R. J., Kaczmarek, L. K., Schwartz, J. H., Solomon, D. H. (1996) Insulin receptor in Aplysia neurons: characterization, molecular cloning, and modulation of ion currents. J. Neurosci. 16, 1645–1658.CrossRefGoogle Scholar
  7. 7.
    Kawai, R., Kobayashi, S., Fujito, Y., Ito, E. (2011) Multiple subtypes of serotonin receptors in the feeding circuit of a pond snail. Zool. Sci. 28, 517–525.CrossRefGoogle Scholar
  8. 8.
    Kojima, S., Yamanaka, M., Fujito, Y., Ito, E. (1996) Differential neuroethological effects of aversive and appetitive reinforcing stimuli on associative learning in Lymnaea stagnalis. Zool. Sci. 13, 803–812.CrossRefGoogle Scholar
  9. 9.
    Kojima, S., Nakamura, H., Nagayama, S., Fujito, Y., Ito, E. (1997) Enhancement of an inhibitory input to the feeding central pattern generator in Lymnaea stagnalis during conditioned taste-aversion learning. Neurosci. Lett. 230, 179–182.CrossRefGoogle Scholar
  10. 10.
    Li, K. W., Geraerts, W. P., Joosse, J. (1992) Purification and sequencing of molluscan insulin-related peptide II from the neuroendocrine light green cells in Lymnaea stagnalis. Endocrinology 130, 3427–3432.CrossRefGoogle Scholar
  11. 11.
    Li, K. W., Geraerts, W. P., Ebberink, R. H., Joosse, J. (1992) Purification and sequencing of molluscan insulin-related peptide I (MIP I) from the neuroendocrine light green cells of Lymnaea stagnalis. Mol. Cell. Endocrinol. 85, 141–150.CrossRefGoogle Scholar
  12. 12.
    Li, K. W., Geraerts, W. P., van Loenhout, H., Joosse, J. (1992) Biosynthesis and axonal transport of multiple molluscan insulin-related peptides by the neuroendocrine light green cells of Lymnaea stagnalis. Gen. Comp. Endocrinol. 87, 79–86.CrossRefGoogle Scholar
  13. 13.
    McCrohan, C. R., Benjamin, P. R. (1980) Synaptic relationships of the cerebral giant cells with motoneurones in the feeding system of Lymnaea stagnalis. J. Exp. Biol. 85, 169–186.Google Scholar
  14. 14.
    Meester, I., Ramkema, M. D., van Minnen, J., Boer, H. H. (1992) Differential expression of four genes encoding molluscan insulin-related peptides in the central nervous system of the pond snail Lymnaea stagnalis. Cell Tissue Res. 269, 183–188.CrossRefGoogle Scholar
  15. 15.
    Nakamura, H., Kobayashi, S., Kojima, S., Urano, A., Ito, E. (1999) PKA-dependent regulation of synaptic enhancement between a buccal motor neuron and its regulatory interneuron in Lymnaea stagnalis. Zool. Sci. 16, 387–394.CrossRefGoogle Scholar
  16. 16.
    Roovers, E., Vincent, M. E., van Kesteren, E., Geraerts, W. P., Planta, R. J., Vreugdenhil, E., van Heerikhuizen, H. (1995) Characterization of a putative molluscan insulin–related peptide receptor. Gene 162, 181–188.CrossRefGoogle Scholar
  17. 17.
    Rose, R. M., Benjamin, P. R. (1979) The relationship of the central motor pattern to the feeding cycle of Lymnaea stagnalis. J. Exp. Biol. 80, 137–163.PubMedGoogle Scholar
  18. 18.
    Sakakibara, M. (2006) Comparative study of visuo-vestibular conditioning in Lymnaea stagnalis. Biol. Bull. 210, 298–307.CrossRefGoogle Scholar
  19. 19.
    Sanna, P. P., Cammalleri, M., Berton, F., Simpson, C., Lutjens, R., Bloom, F. E., Francesconi, W. (2002) Phosphatidylinositol 3–kinase is required for the expression but not for the induction or the maintenance of long-term potentiation in the hippocampal CA1 region. J. Neurosci. 22, 3359–3365.CrossRefGoogle Scholar
  20. 20.
    Smit, A. B., Geraerts, P. M., Meester, I., van Heerikhuizen, H., Joosse, J. (1991) Characterization of a cDNA clone encoding molluscan insulin-related peptide II of Lymnaea stagnalis. Eur. J. Biochem. 199, 699–703.CrossRefGoogle Scholar
  21. 21.
    Smit, A. B., Thijsen, S. F., Geraerts, W. P., Meester, I., van Heerikhuizen, H., Joosse, J. (1992) Characterization of a cDNA clone encoding molluscan insulin-related peptide V of Lymnaea stagnalis. Brain Res. Mol. Brain Res. 14, 7–12.CrossRefGoogle Scholar
  22. 22.
    Smit, A. B., van Marle, A., van Elk, R., Bogerd, J., van Heerikhuizen, H., Geraerts, W. P. (1993) Evolutionary conservation of the insulin gene structure in invertebrates: cloning of the gene encoding molluscan insulin-related peptide III from Lymnaea stagnalis. J. Mol. Endocrinol. 11, 103–113.CrossRefGoogle Scholar
  23. 23.
    Smit, A. B., Spijker, S., van Minnen, J., Burke, J. F., De Winter, F., van Elk, R., Geraerts, W. P. (1996) Expression and characterization of molluscan insulin-related peptide VII from the mollusc Lymnaea stagnalis. Neuroscience 70, 589–596.CrossRefGoogle Scholar
  24. 24.
    Straub, V. A., Staras, K., Kemenes, G., Benjamin, P. R. (2002) Endogenous and network properties of Lymnaea feeding central pattern generator interneurons. J. Neurophysiol. 88, 1569–1583.CrossRefGoogle Scholar
  25. 25.
    Straub, V. A., Grant, J., O’Shea, M., Benjamin, P. R. (2007) Modulation of serotonergic nurotransmission by nitric oxide. J. Neurophysiol. 97, 1088–1099.CrossRefGoogle Scholar
  26. 26.
    Sugai, R., Azami, S., Shiga, H., Watanabe, T., Sadamoto, H., Kobayashi, S., Hatakeyama, D., Fujito, Y., Lukowiak, K., Ito, E. (2007) One-trial conditioned taste aversion in Lymnaea: good and poor performers in long-term memory acquisition. J. Exp. Biol. 210, 1225–1237.CrossRefGoogle Scholar
  27. 27.
    Tomioka, M., Adachi, T., Suzuki, H., Kunitomo, H., Schafer, W. R., Iino, Y. (2006) The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 51, 613–625.CrossRefGoogle Scholar
  28. 28.
    Wagatsuma, A., Sugai, R., Chono, K., Azami, S., Hatakeyama, D., Sadamoto, H., Ito, E. (2004) The early snail acquires the learning. comparison of scores for conditioned taste aversion between morning and afternoon. Acta Biol. Hung. 55, 149–155.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Ito
    • 1
    Email author
  • R. Okada
    • 1
  • Yuki Sakamoto
    • 1
  • Emi Otshuka
    • 1
  • K. Mita
    • 1
  • Akiko Okuta
    • 2
  • H. Sunada
    • 3
  • M. Sakakibara
    • 3
  1. 1.Laboratory of Functional BiologyKagawa School of Pharmaceutical Sciences, Tokushima Bunri UniversitySanukiJapan
  2. 2.Department of BiophysicsGraduate School of Science, Kyoto UniversityKyotoJapan
  3. 3.Department of Biological Science and TechnologySchool of High-Technology for Human Welfare, Tokai UniversityNumazuJapan

Personalised recommendations