Advertisement

Acta Biologica Hungarica

, Volume 63, Issue 4, pp 453–462 | Cite as

Different Gene Transfer Methods at the Very Early, Early, Late and Whole Embryonic Stages in Chicken

  • Ping Gong
  • Y. P. Yang
  • Y. Yang
  • Yan P. Feng
  • S. J. Li
  • Xiu L. Peng
  • Y. Z. GongEmail author
Article

Abstract

New technologies in gene transfer combined with experimental embryology make the chicken embryo an excellent model system for gene function studies. The techniques of in ovo electroporation, in vitro culture for ex ovo electroporation and retrovirus-mediated gene transfer have already been fully developed in chicken. Yet to our knowledge, there are no definite descriptions on the features and application scopes of these techniques. The survival rates of different in vitro culture methods were compared and the EGFP expression areas of different gene transfer techniques were explored. It was that the optimal timings of removing embryo for EC culture and Petri dish system was at El.5 and E2.5, respectively; and optimal timing of injecting retrovirus is at E0. Results indicated that the EC culture, in ovo electroporation, the Petri dish system and retrovirus-mediated method are, respectively, suitable for the very early, early, late and whole embryonic stages in chicken. Comparison of different gene transfer methods and establishment of optimal timings are expected to provide a better choice of the efficient method for a particular experiment.

Keywords

Chicken embryo gene transfer in ovo electroporation in vitro culture retrovirus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We are grateful to Dr. Yoshiko Takahashi (Nara Institute of Science and Technology, Japan) for the kind gifts of pBI-EGFP and pCAGGS-rtTA2S-M2, and also to Professor Cliff Tabin (Harvard Medical School, USA) for the kind gift of RCASBP.B viral vector. This work was supported by the National Natural Science Foundation of China (30800781 and 31072022) and New faculty funding of Ministry of Education of P. R. China (200805041054).

References

  1. 1.
    Boerkoel, C. F., Federspiel, M. J., Salter, D. W., Payne, W., Crittenden, L. B., Kung, H. J., Hughes, S. H. (1993) A new defective retroviral vector system based on the Bryan strain of Rous sarcoma virus. Virology 195, 669–679.CrossRefGoogle Scholar
  2. 2.
    Bosselman, R. A., Hsu, R. Y., Boggs, T., Hu, S., Bruszewski, J., Ou, S., Kozar, L., Martin, F., Green, C., Jacobsen, F. (1989) Germline transmission of exogenous genes in the chicken. Science 243, 533–535.CrossRefGoogle Scholar
  3. 3.
    Cerda, G. A., Thomas, J. E., Allende, M. L., Karlstrom, R. O., Palma, V. (2006) Electroporation of DNA, RNA, and morpholinos into zebrafish embryos. Methods 39, 207–211.CrossRefGoogle Scholar
  4. 4.
    Chapman, S. C., Collignon, J., Schoenwolf G. C., Lumsden, A. (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev. Dyn. 220, 284–289.CrossRefGoogle Scholar
  5. 5.
    Chen, Y. X., Krull, C. E., Reneker, L. W. (2004) Targeted gene expression in the chicken eye by in ovo electroporation. Mol. Vis. 10, 874–883.PubMedGoogle Scholar
  6. 6.
    Funahashi, J., Okafuji, T., Ohuchi, H., Noji, S., Tanaka, H, Nakamura, H. (1999) Role of Pax-5 in the regulation of a mid-hindbrain organizer’s activity. Dev. Growth Differ. 41, 59–72.CrossRefGoogle Scholar
  7. 7.
    Hamburger, V., Hamilton, H. L. (1951) A series of normal stages in the development of the chick embryo. J. Morphol. 88, 49–92.CrossRefGoogle Scholar
  8. 8.
    Hatakeyama, J., Shimamura, K. (2008) Method for electroporation for the early chick embryo. Dev. Growth Differ. 50, 449–152.CrossRefGoogle Scholar
  9. 9.
    Homburger, S. A., Fekete, D. M. (1996) High efficiency gene transfer into the embryonic chicken CNS using B-subgroup retroviruses. Dev. Dyn. 206, 112–120.CrossRefGoogle Scholar
  10. 10.
    Hughes, S. H., Greenhouse, J. J., Petropoulos, C. J., Sutrave, P. (1987) Adaptor plasmids simplify the insertion of foreign DNA into helper-independent retroviral vectors. J. virol. 61, 3004–3012.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Iba, H. (2000) Gene transfer into chicken embryos by retrovirus vectors. Dev. Growth Differ. 42, 213–218.CrossRefGoogle Scholar
  12. 12.
    Itasaki, N., Bel-Vialar, S., Krumlauf, R. (1999) “Shocking” developments in chick embryology: elec-troporation and in ovo gene expression. Nat. Cell Biol. 1, E203–207.CrossRefGoogle Scholar
  13. 13.
    Krull, C. E. (2004) A primer on using in ovo electroporation to analyze gene function. Dev. Dyn. 229, 433–139.CrossRefGoogle Scholar
  14. 14.
    Kwon, M. S., Koo, B. C., Choi, B. R., Lee, H. T., Kim, Y. H., Ryu, W. S., Shim, H., Kim, J. H., Kim, N. H., Kim, T. (2004) Development of transgenic chickens expressing enhanced green fluorescent protein. Biochem. Biophys. Res. Commun. 320, 442–148.CrossRefGoogle Scholar
  15. 15.
    Logan, M., Tabin, C. (1998) Targeted gene misexpression in chick limb buds using avian replication-competent retroviruses. Methods 14, 407–120.CrossRefGoogle Scholar
  16. 16.
    Luo, J., Redies, C. (2004) Overexpression of genes in Purkinje cells in the embryonic chicken cerebellum by in vivo electroporation. J. Neurosci. Methods 139, 241–245.CrossRefGoogle Scholar
  17. 17.
    Luo, J., Redies, C. (2005) Ex ovo electroporation for gene transfer into older chicken embryos. Dev. Dyn. 233, 1470–1477.CrossRefGoogle Scholar
  18. 18.
    Momose, T., Tonegawa, A., Takeuchi, J., Ogawa, H., Umesono, K., Yasuda, K. (1999) Efficient targeting of gene expression in chick embryos by microelectroporation. Dev. Growth Differ. 41, 335–344.CrossRefGoogle Scholar
  19. 19.
    Morgan, B. A., Fekete, D. M. (1996) Manipulating gene expression with replication-competent retroviruses. Methods Cell Biol. 51, 185–218.CrossRefGoogle Scholar
  20. 20.
    Mozdziak, P., Borwornpinyo, S., McCoy, D., Petitte, J. (2003) Development of transgenic chickens expressing bacterial beta-galactosidase. Dev. Dyn. 226, 439–145.CrossRefGoogle Scholar
  21. 21.
    Muramatsu, T., Mizutani, Y., Ohmori, Y., Okumura, J. (1997) Comparison of three nonviral transfec-tion methods for foreign gene expression in early chicken embryos in ovo. Biochem. Biophys. Res. Commun. 230, 376–380.CrossRefGoogle Scholar
  22. 22.
    Nakamura, H., Funahashi, J. (2001) Introduction of DNAinto chick embryos by in ovo electroporation. Methods 24, 43–18.CrossRefGoogle Scholar
  23. 23.
    Nakamura, H., Watanabe, Y, Funahashi, J. (2000) Misexpression of genes in brain vesicles by in ovo electroporation. Dev. Growth Differ. 42, 199–201.CrossRefGoogle Scholar
  24. 24.
    Narita, T., Saitoh, K, Kameda, T., Kuroiwa, A., Mizutani, M., Koike, C., Iba, H., Yasugi, S. (2000) BMPs are necessary for stomach gland formation in the chicken embryo: a study using virally induced BMP-2 and Noggin expression. Development 127, 981–988.Google Scholar
  25. 25.
    New, D. (1955) A new technique for the cultivation of the chick embryo in vitro. J. Embryo Exp. Morph. 3, 320–331.Google Scholar
  26. 26.
    Odani, N., Ito, K, Nakamura, H. (2008) Electroporation as an efficient method of gene transfer. Dev. Growth Differ. 50, 443–148.CrossRefGoogle Scholar
  27. 27.
    Pedersen, A. FL, Heller, R. S. (2005) A possible role for the canonical Wnt pathway in endocrine cell development in chicks. Biochem. Biophys. Res. Commun. 333, 961–968.CrossRefGoogle Scholar
  28. 28.
    Sakamoto, K., Nakamura, H., Takagi, M., Takeda, S., Katsube, K. (1998) Ectopic expression of lunatic Fringe leads to downregulation of Serrate-1 in the developing chick neural tube; analysis using in ovo electroporation transfection technique. FEBS Lett. 426, 337–341.CrossRefGoogle Scholar
  29. 29.
    Sakuta, H., Suzuki, R., Noda, M. (2008) Retrovirus vector-mediated gene transfer into the chick optic vesicle by in ovo electroporation. Dev. Growth Differ. 50, 453–157.CrossRefGoogle Scholar
  30. 30.
    Sato, Y., Kasai, T., Nakagawa, S., Tanabe, K., Watanabe, T., Kawakami, K, Takahashi, Y. (2007) Stable integration and conditional expression of electroporated transgenes in chicken embryos. Dev. Biol. 305, 616–624.CrossRefGoogle Scholar
  31. 31.
    Scaal, M., Gros, J., Lesbros, C., Marcelle, C. (2004) In ovo electroporation of avian somites. Dev. Dyn. 229, 643–650.CrossRefGoogle Scholar
  32. 32.
    Smith, C. A., Roeszler, K. N., Ohnesorg, T., Cummins, D. M., Farlie, P. G., Doran, T. J., Sinclair, A. H. (2009) The avian Z-linked gene DMRT1 is required for male sex determination in the chicken. Nature 461, 267–271.CrossRefGoogle Scholar
  33. 33.
    Smith, C. A., Roeszler, K. N., Sinclair, A. H. (2009) Genetic evidence against a role for W-linked histidine triad nucleotide binding protein (HINTW) in avian sex determination. Int. J. Dev. Biol. 53, 59–67.CrossRefGoogle Scholar
  34. 34.
    Smith, C. A., Roeszler, K. N., Sinclair, A. H. (2009) Robust and ubiquitous GFP expression in a single generation of chicken embryos using the avian retroviral vector, RCASBR Differentiation 77, 473–482.CrossRefGoogle Scholar
  35. 35.
    Tanaka, J., Harada, H., Ito, K., Ogura, T., Nakamura, H. (2010) Gene manipulation of chick embryos in vitro, early chick culture, and long survival in transplanted eggs. Dev. Growth Differ. 52, 629–634.CrossRefGoogle Scholar
  36. 36.
    Uchikawa, M., Takemoto, T., Kamachi, Y., Kondoh, H. (2004) Efficient identification of regulatory sequences in the chicken genome by a powerful combination of embryo electroporation and genome comparison. Mech. Dev. 121, 1145–1158.CrossRefGoogle Scholar
  37. 37.
    Watanabe, T., Saito, D., Tanabe, K., Suetsugu, R., Nakaya, Y., Nakagawa, S, Takahashi, Y. (2007) Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev. Biol. 305, 625–636.CrossRefGoogle Scholar
  38. 38.
    Yasugi, S., Nakamura, H. (2000) Gene transfer into chicken embryos as an effective system of analysis in developmental biology. Dev. Growth Differ. 42, 195–197.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Ping Gong
    • 1
    • 2
  • Y. P. Yang
    • 1
    • 3
  • Y. Yang
    • 1
    • 2
  • Yan P. Feng
    • 1
  • S. J. Li
    • 1
  • Xiu L. Peng
    • 1
  • Y. Z. Gong
    • 1
    Email author
  1. 1.Key Laboratory of Agricultural Animal GeneticsBreeding and Reproduction of Ministry of EducationWuhan, HubeiP. R. China
  2. 2.Wuhan Institute of Animal Husbandry and Veterinary ScienceWuhan, HubeiP. R. China
  3. 3.Wuhan Animal Husbandry Science and Technology Extension StationWuhan, HubeiP. R. China

Personalised recommendations