Advertisement

Acta Biologica Hungarica

, Volume 63, Issue 4, pp 426–440 | Cite as

Repeated Simultaneous Cortical Electrophysiological and Behavioral Recording in Rats Exposed to Manganese-Containing Nanoparticles

  • Sz. Takács
  • Andrea Szabó
  • G. Oszlánczi
  • P. Pusztai
  • A. Sápi
  • Z. Kónya
  • A. PappEmail author
Open Access
Article

Abstract

Male Wistar rats wearing chronically implanted cortical electrodes were exposed to Mn-containing nano-particles via the airways for 8 weeks following a 2-week pre-exposure period. The rats’ cortical electrical activity and open field motility was recorded simultaneously, in weekly repetitions. It was supposed that this technique can provide better insight in the development of Mn-induced CNS damage. Decreased motility (less distance covered, longer periods of immobility) and increased total power of cortical electrical activity developed in parallel in the first 4–5 weeks of treatment but showed little change afterwards. Both the behavioral and the electrophysiological effect were in fair correlation with the rats’ internal Mn exposure determined from brain samples. The results confirmed the non-linear dose- and time-dependence of Mn effects suggested by previous studies. Repeated simultaneous behavioral and electrophysiological recording during a longer treatment with neurotoxic metals (or other xenobiotics) seems to be a promising method.

Keywords

Manganese rat cortical electrical activity open field motility chronic recording 

Notes

Acknowledgements

The authors are thankful to Mr. József Koszta and Ms. Edit Pálinkás at the laboratory of the MOL Hungarian Oil and Gas Company for the manganese level determinations.

References

  1. 1.
    Antonini, J. M., Lewis, A. B., Roberts, J. R., Whaley, D. A. (2003) Pulmonary effects of welding fumes: review of worker and experimental animal studies. Am. J. Ind. Med 43, 350–360.CrossRefGoogle Scholar
  2. 2.
    Bader, M., Dietz, M. C., Hiring, A., Triebig, G. (1999) Biomonitoring of manganese in blood, urine and axillary hair following low-dose exposure during the manufacture of dry cell batteries. Int. Arch. Occup. Environ. Health 72, 521–527.CrossRefGoogle Scholar
  3. 3.
    Bowler, R., Koller, W., Schultz, P. E. (2006) Parkinsonism due to manganism in a welder: Neurological and neuropsychological sequelae. Neurotoxicology 27, 327–332.CrossRefGoogle Scholar
  4. 4.
    Calderon-Garciduenas, L., Azzarelli, B., Acuna, H. Garcia, R., Gambling, T. M., Osnaya, N., Monroy S., Tizapantzi M. D. R., Carson, J. L., Villarreal-Calderon, A., Rewcastle, B. (2002) Air pollution and brain damage. Toxicol. Pathol. 3, 373–389.CrossRefGoogle Scholar
  5. 5.
    Calne, D. B., Chu, N. S., Huang, C. C., Lu, C. S., Olanow, W. (1994) Manganism and idiopathic Parkinsonism: Similarities and differences. Neurology 44, 1583–1586.CrossRefGoogle Scholar
  6. 6.
    Couper, J. (1837) On the effects of black oxide of manganese when inhaled into the lungs. Br. Ann Med. Pharm. Vit. Stat. Gen. Sci. 1, 41–42.Google Scholar
  7. 7.
    Erikson, K. M., Aschner, M. (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem. Int. 43, 475–180.CrossRefGoogle Scholar
  8. 8.
    Gwiazda, R., Lucchini, R., Smith, D. (2007) Adequacy and consistency of animal studies to evaluate the neurotoxicology of chronic low-level manganese exposure in humans. J. Toxicol. Environ. Health 70, 594–605.CrossRefGoogle Scholar
  9. 9.
    Halatek, T., Sinczuk-Walczak, H., Szymcsak, M., Rydzynski, K. (2005) Neurological and respiratory symptoms in shipyard welders exposed to manganase. Int. J. Occup. Med Environ. Health 18, 265–274.PubMedGoogle Scholar
  10. 10.
    He, S. C., Niu, Q. (2004) Subclinical neurophysiological effects of manganese in welding workers. Int. J. Immunopathol. Pharmacol. 17, 11–16.CrossRefGoogle Scholar
  11. 11.
    ICRP (1994) Human respiratory tract model for radiological protection. A report of a task group of the ICRP. Annals of the International Commission on Radiation Protection, ICRP Publication 66, Pergamon Press, OxfordGoogle Scholar
  12. 12.
    Mate, Zs., Szabo, A., Oszlanczi, G., Papp, A. (2011) Modelling per os Mn exposure and examining its functional nervous system effects in rats. Egeszsegtudomdny 55, 71–81 (in Hungarian).Google Scholar
  13. 13.
    Mena, I., Marin, O., Fuenzalida, S., Cotzias, G. C. (1967) Chronic manganese poisoning: clinical picture and manganese turnover. Neurology 17, 128–136.CrossRefGoogle Scholar
  14. 14.
    Normandin, L., Beaupre, L. A., Salehi, F., St-Pierre, A., Kennedy, G., Mergler, D., Butterworth, R. F., Philippe, S., Zayed, J. (2004) Manganese distribution in the brain and neurobehavioral changes following inhalation exposure of rats to three chemical forms of manganese. Neurotoxicology 25, 411–433.CrossRefGoogle Scholar
  15. 15.
    Oberdorster, G., Oberdorster, E., Oberdorster, J. (2005) Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Persp. 7, 823–839.CrossRefGoogle Scholar
  16. 16.
    Oszlanczi, G., Vezer, T., Sarkozi, L., Horvath, E., Konya, Z., Papp, A. (2010) Functional neurotoxicity of Mn-containing nanoparticles in rats. Ecotoxicol. Environ. Sqf. 73, 2004–2009.CrossRefGoogle Scholar
  17. 17.
    Santamaria, A. B., Cushing, C. A., Antonini, J. M., Finley, B. L., Mowat, F. S. (2007) State-of-the-science review: Does manganese exposure during welding pose a neurological risk? J. Toxicol. Environ. Health, PartB 10, 417–165.CrossRefGoogle Scholar
  18. 18.
    Saric, M., Markicevic, A., Hrustic, O. (1977) Occupational exposure to manganese. Br. J. Ind. Med 34, 114–118.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Sinczuk-Walczak, H., Jakubowski, M., Matczak, W. (2001) Neurological and neurophysiological examinations of workers occupationally exposed to manganese. Int. J. Occup. Med. Environ. Health 14, 329–337.PubMedGoogle Scholar
  20. 20.
    Sjogren, B., Iregren, A., Freeh, W., Hagman, M., Johansson, L., Tesarz, M., Wennberg, A. (1996) Effects of the nervous system among welders exposed to aluminium and manganese. Occup. Environ Med. 53, 32–10.CrossRefGoogle Scholar
  21. 21.
    Takacs, Sz., Papp, A. (2010) Effects of antiepileptics and an anesthetic on basal cortical activity and spontaneous motility in an epilepsy-prone rat strain. Acta Physiol. Hung. 97, 480–181.Google Scholar
  22. 22.
    Takeda, A., Sawashita, J., Okada, S. (1995) Biological half-lives of zinc and manganese in rat brain. Brain Res. 695, 53–58.CrossRefGoogle Scholar
  23. 23.
    Tapin, D., Kennedy, G., Lambert, J., Zayed, J. (2006) Bioaccumulation and locomotor effects of manganese sulphate in Sprague-Dawley rats following subchronic (90 days) inhalation exposure. Toxicol. Appl. Pharmacol. 211, 166–174.CrossRefGoogle Scholar
  24. 24.
    Vezer, T., Kurunczi, A., Naray, M., Papp, A., Nagymajtenyi, L. (2007) Behavioral effects of sub-chronic inorganic manganese exposure in rats. Amer J. Ind. Med 50, 841–852.CrossRefGoogle Scholar
  25. 25.
    Vezer, T., Papp, A., Hoyk, Z., Varga, C., Naray, M., Nagymajtenyi, L. (2005) Behavioral and neuro-toxicological effects of subchronic manganese exposure in rats. Env. Toxicol. Pharmacol. 19, 797–810.CrossRefGoogle Scholar
  26. 26.
    Young, T., Myers, J. E., Thompson, M. L. (2005) The nervous system effects of occupational exposure to manganese - measured as respirable dust - in a South African manganese smelter. Neurotoxicology 26, 993–1000.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Sz. Takács
    • 1
  • Andrea Szabó
    • 1
  • G. Oszlánczi
    • 1
  • P. Pusztai
    • 2
  • A. Sápi
    • 2
  • Z. Kónya
    • 2
  • A. Papp
    • 1
    Email author
  1. 1.Department of Public HealthUniversity of Szeged, Faculty of MedicineSzegedHungary
  2. 2.Department of Applied and Environmental ChemistryUniversity of Szeged, Faculty of Science and InformaticsSzegedHungary

Personalised recommendations