Acta Biologica Hungarica

, Volume 63, Issue 4, pp 411–425 | Cite as

Early Postnatal Lead Exposure Induces Tau Phosphorylation in the Brain of Young Rats

  • A. RahmanEmail author
  • K. M. Khan
  • G. Al-Khaledi
  • I. Khan
  • Sreeja Attur


Cognitive impairment is a common feature of both lead exposure and hyperphosphorylation of tau. We, therefore, investigated whether lead exposure would induce tau hyperphosphorylation. Wistar rat pups were exposed to 0.2% lead acetate via their dams’ drinking water from postnatal day 1 to 21. Lead in blood and brain were measured by atomic absorption spectrophotometry and the expression of tau, phos-phorylated tau and various serine/threonine protein phosphatases (PP1, PP2A, PP2B and PP5) in the brain was analyzed by Western blot. Lead exposure significantly impaired learning and resulted in a significant reduction in the expression of tau but increased the phosphorylation of tau at Serl99/202, Thr212/Ser214 and Thr231. PP2A expression decreased, whereas, PP1 and PP5 expression increased in lead-exposed rats. These results demonstrate that early postnatal exposure to lead decrease PP2A expression and induce tau hyperphosphorylation at several serine and threonine residues. Hyperphosphorylation of tau may be a mechanism of Pb-induced deficits in learning and memory.


Tau hyperphosphorylation lead-protein phosphatases PP2A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by Kuwait University grants WF01/07. The authors acknowledge the excellent technical assistance provided by Drs. S. Jacob, Lukman Talib and T. S. Srikumar. We acknowledge the support from the Core facility of Health Science Center for allowing us to utilize the facility (Grants GM01/01 and GM01/05). None of the authors declare any conflict of interest.


  1. 1.
    Alonso, A. C., Mederlyova, A., Novak, M., Grundke-Iqbal, I., Iqbal, K. (2004) Promotion of hyper-phosphorylation by frontotemporal dementia tail mutations. J. Biol. Chem. 279, 34878–34881.Google Scholar
  2. 2.
    Alonso, A. C., Zaidi, T., Grundke-Iqbal, I., Iqbal, K. (1994) Role of abnormally phosphorylated tau in the breakdown of microtubule in Alzheimer disease. Proc. Natl. Acad. Sci. USA, 19, 5562–5566.CrossRefGoogle Scholar
  3. 3.
    Bellinger, D. C. (2008) Very low lead exposure and children’s neurodevelopment. Curr. Opin. Pediatr. 20, 172–177.PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Bennecib, M., Gong, C. X., Grundke-Iqbal, I., Iqbal, K. (2001) Inhibition of PP-2A upregulates CaMKII in rat forebrain and induces hyperphosphorylation of tau at Ser 262/356. FEES Lett. 490, 15–22.CrossRefGoogle Scholar
  5. 5.
    Berger, Z., Roder, H., Hanna, A., Carlson, A., Rangachari, V., Yue, M., Wszolek, Z., Ashe, K., Knight, J., Dickson, D., Andorfer, C., Rosenberry, T. L., Lewis, J., Hutton, M., Janus, C. (2007) Accumulation of pathological tau species and memory loss in a conditional model of tauopathy. J. Neurosci. 27, 3650–3662.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Boekhoorn, K., Terwel, D., Biemans, B., Borghgraef P., Wiegert, O., Ramakers, G. J., Vos, K., Krugers, H., Tomiyama, T., Mori, H., Joels, M., Leuven, E, Lucassen, P. J. (2006) Improved long-term potentiation and memory in young tau-P301L transgenic mice before onset of hyperphosphorylation and tauopathy. J. Neurosci. 26, 3514–3523.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Counter, S. A., Buchanan, L. H., Ortega, F. (2005) Neurocognitive impairment in lead-exposed children of Andean lead-glazing workers. J. Occup. Environ Med. 47, 306–312.PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Counter, S. A., Buchanan, L. H., Ortega, F. (2009) Neurocognitive screening of lead-exposed Andean adolescents and young adults. J. Toxicol Environ. Health A. 72, 625–632.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Garber, M. M., Heiman, A. S. (2002) The in vitro effects of Pb acetate on NO production by C6 glial cells. Toxicol. In Vitro 16, 499–508.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Genoux, D., Bezerra, P., Montgomery, J. M. (2011) Intra-spaced stimulation and protein phosphatase 1 dictate the direction of synaptic plasticity. Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2011.07669.x. [Epub ahead of print]Google Scholar
  11. 11.
    Gong, C. X., Lidsky, T., Wegiel, J., Zuck, L., Grundke-Iqbal, I., Iqbal, K. (2000) Phosphorylation of microtubule-associated protein tau is regulated by protein phosphatase 2A in mammalian brain. Implications for neurofibrillary degeneration in Alzheimer’s disease. J. Biol. Chem. 275, 5535–5544.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Gong, C. X., Liu, F., Grundke-Iqbal, I., Iqbal, K. (2005) Post-translational modifications of tau protein in Alzheimer’s disease. J. Neural. Transm. 112, 813–838.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Graff, J., Koshibu, K., Jouvenceau, A., Dutar, P., Mansuy, I. M. (2010) Protein phosphatase 1-depen-dent transcriptional programs for long-term memory and plasticity. Learn. Mem. 17, 355–363.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Grundke-Iqbal, I., Iqbal, K., Quinlan, M., Tung, Y. C., Zaidi, M. S., Wisniewski, H. M. (1986) Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J. Biol. Chem. 261, 6084–6089.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Grundke-Iqbal, I., Iqbal, K., Tung, Y. C., Quinlan, M., Wisniewski, H. M., Binder, L. (1986) Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc. Natl Acad Sci. USA 83, 4913–1917.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Haege, S., Galetzka, D., Zechner, U., Haaf T., Gamerdinger, M., Behl, C., Hiemke, C., Schmitt, U. (2010) Spatial learning and expression patterns of PP1 mRNA in mouse hippocampus. Neuro-psychobiology 61, 188–196.Google Scholar
  17. 17.
    Heidmets, L. T., Zharkovsky, T., Jurgenson, M., Jaako-Movits, K., Zharkovsky, A. (2006) Early postnatal, low-level lead exposure increases the number of PSA-NCAM expressing cells in the dentate gyrus of adult rat hippocampus. Neurotoxicology 27, 39–13.PubMedCrossRefGoogle Scholar
  18. 18.
    Huang, E., Ong, W. Y., Connor, J. R. (2004) Distribution of divalent metal transporter-1 in the monkey basal ganglia. Neuroscience 128, 487–196.PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Iqbal, K., Alonso, A. C., Chen, S., Chohan, M. O., El-Akkad, E., Gong, C. X., Khatoon, S., Li, B., Li, F., Rahman, A., Tanimukai, H., Grundke-Iqbal, I. (2005) Tau pathology in Alzheimer disease and other tauopathies. Biochem. Biophys. Acta 173, 198–210.Google Scholar
  20. 20.
    Jaako-Movits, K., Zharkovsky, T., Romantchik, O., Jurgenson, M., Merisalu, E., Heidmets, L. T., Zharkovsky, A. (2005) Developmental lead exposure impairs contextual fear conditioning and reduces adult hippocampal neurogenesis in the rat brain. Int. J. Dev. Neurosci. 23, 627–635.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kins, S., Kurosinski, P., Nitsch, R. M., Gotz, J. (2003) Activation of the ERK and JNK signaling pathways caused by neuron-specific inhibition of PP2A in transgenic mice. Am. J. Pathol. 163, 833–843.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Koshibu, K., Graff, J., Beullens, M., Heitz, F. D., Berchtold, D., Russig, H., Farinelli, M., Bollen, M, Mansuy, I. M. (2009) Protein phosphatase 1 regulates the histone code for long-term memory. J. Neurosci. 29, 13079–13089.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Koshibu, K., Graff J., Mansuy, I. M. (2011) Nuclear protein phosphatase-1: an epigenetic regulator of fear memory and amygdala long-term potentiation. Neuroscience 173, 30–36.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Kosmidis, S., Grammenoudi, S., Papanikolopoulou, K., Skoulakis, E. M. (2010) Differential effects of tau on the integrity and function of neurons essential for learning in Drosophila. J. Neurosci. 30, 464–177.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Lefauconnier, J. M., Bernard, G., Mellerio, F., Sebille, A., Cesarini, E. (1983) Lead distribution in the nervous system of 8-month-old rats intoxicated since birth by lead. Experientia 39, 1030–1031.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Li, N., Yu, Z. L., Wang, L., Zheng, Y T., Jia, J. X., Wang, Q., Zhu, M. J., Liu, X. L., Xia, X., Li, W. J. (2010) Increased tau phosphorylation and beta amyloid in the hippocampus of mouse pups by early life lead exposure. Acta Biol. Hung. 61, 123–134.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lindwall, G., Cole, R. D. (1984) Phosphorylation affects the ability of tau protein to promote microtubule assembly. J. Biol. Chem. 259, 5301–5305.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Liu, F., Grundke-Iqbal, I., Iqbal, K., Gong, C. X. (2005) Contributions of protein phosphatases PPL PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur. J. Neurosci. 22, 1942–1950.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Liu, F., Grundke-Iqbal, I., Iqbal, K., Oda, Y., Tomizawa, K., Gong, C. X. (2005) Truncation and activation of calcineurin A by calpain I in Alzheimer disease brain. J. Biol. Chem. 280, 37755–37762.PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Michaelson, I. A., Bradbury, M. (1982) Effect of early inorganic lead exposure on rat blood-brain barrier permeability on tyrosine or choline. Biochem. Pharmacol. 31, 1881–1885.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Moorhouse, S. R., Carden, S., Drewitt, P. N., Eley, B. P., Hargreaves, R. J., Pelling, D. (1988) The effect of chronic low level lead exposure on blood-brain barrier function in the developing rat. Biochem. Pharmacol. 37, 4539–1547.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Needleman, H. L., Gatsonis, G. (1990) Low-level lead exposure and the IQ of children: a meta analysis of modern studies. J. Am. Med. Assoc. 263, 673–678.CrossRefGoogle Scholar
  33. 33.
    Niklowitz, W. J., Mandybur, T. I. (1975) Neurofibrillary changes following childhood lead encephalopathy. J. Neuropathol. Exp. Neurol. 34, 445–155.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Ong, W. Y., He, X., Chua, L. H., Ong, C. N. (2006) Increased uptake of divalent metals lead and cadmium into the brain after kainite-induced neuronal injury. Exp. Brain Res. 173, A&&-MA.Google Scholar
  35. 35.
    Pei, J. J., Gong, C. X., An, W. L., Winblad, B., Cowburn, R. R., Grundke-Iqbal, I., Iqbal, K. (2003) Okadaic-acid-induced inhibition of protein phosphatase 2A produces activation of mitogen-activated protein kinases ERK1/2, MEK1/2, and p70 S6, similar to that in Alzheimer’s disease. Am. J. Pathol. 163, 845–858.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Rahman, A., Brew, B. J., Guillemin, G. J. (2010) Lead dysregulates serine/threonine protein phosphatases in human neurons. Neurochem. Res. 36, 195–204.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Rai, A., Maurya, S. K., Khare, R., Srivastava, A., Bandyopadhyay, S. (2010) Characterization of developmental neurotoxicity of As, C., and Pb mixture: synergistic action of metal mixture in glial and neuronal functions. Toxicol. Sci. 118, 586–601.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Terry, Jr. A. V. (2009) Spatial Navigation (Water Maze) Tasks. In: Buccausco, J. J. (ed.) Methods of Behavior Analysis in Neuroscience. CRC Press, Boca Raton, pp. 13.1–13.4.Google Scholar
  39. 39.
    Tolnay, M., Probst, A. (1999) Review: tau protein pathology in Alzheimer’s disease and related disorders. Neuropathol. Appl. Neurobiol. 25, 171–187.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Toscano, C. D., O’Callaghan, J. P., Guilarte, T. R. (2005) Calcium/calmodulin-dependent protein kinase II activity and expression are altered in the hippocampus of Pb2+-exposed rats. Brain Res. 1044, 51–58.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Wang, Q., Luo, W., Zheng, W., Liu, Y., Xu, H., Zheng, G., Dai, Z., Zhang, W., Chen, Y., Chen, J. (2007) Iron supplement prevents lead-induced disruption of the blood-brain barrier during rat development. Toxicol. Appl. Pharmacol. 219, 33–41.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wang, Q., Luo, W., Zhang, W., Liu, M., Song, H., Chen, J. (2011) Involvement of DMT1 +IRE in the transport of lead in an in vitro BBB model. Toxicol. In Vitro 25, 991–998.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Wang, X. S., Ong, W. Y., Connor, J. R. (2001) A light and electron microscopic study of the iron transporter protein DMT-1 in the monkey cerebral neocortex and hippocampus. J. Neurocytol. 30, 353–360.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhang, G. S., Ye, W. R., Tao, R. R., Lu, Y M., Shen, G. R., Fukunaga, K., Huang, J. Y., Ji, Y L., Han, F. (2011) Expression profiling of Ca2+/calmodulin-dependent signaling molecules in the rat dorsal and ventral hippocampus after acute lead exposure. Exp. Toxicol. Pathol, doi: 10.1016/j. etp.2010.12.004Google Scholar
  45. 45.
    Zhao, W. Q., Feng, C., Alkon, D. L. (2003) Impairment of phosphatase 2A contributes to the prolonged MAP kinase phosphorylation in Alzheimer’s disease fibroblasts. Neurobiol. Dis. 14, 458–169.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2012

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • A. Rahman
    • 1
    Email author
  • K. M. Khan
    • 2
  • G. Al-Khaledi
    • 3
  • I. Khan
    • 4
  • Sreeja Attur
    • 1
  1. 1.Department of Family Sciences, College for WomenKuwait UniversityKuwait
  2. 2.Department of Anatomy, Faculty of MedicineKuwait UniversityKuwait
  3. 3.Department of PharmacologyKuwait UniversityKuwait
  4. 4.Department of Biochemistry, Faculty of MedicineKuwait UniversityKuwait

Personalised recommendations