Thermodynamic and Kinetic Processes during the Unfolding of BSA in the Presence of the Mycotoxin Patulin

Abstract

The effects of the mycotoxin patulin on the thermodynamics and kinetics of the transition of bovine serum albumin (BSA) in aqueous solution were studied by Differential Scanning Calorimetry and Photo-luminescence methods. Results show that in the presence of patulin, the free enthalpy change during the transition of BSA was decreased by an average of ~46 kJ/mol, the free energy change was decreased by ~4 kJ/mol, and the activation energy fell from ~1546 to -840 kJ/mol. These results indicate that the bioactivity of patulin is based on the kinetic rather than on the thermodynamic properties of the transition. This is the first evidence of the direct interaction of patulin with the free thiol-containing BSA, a process which could contribute to the adverse cyto- and genotoxic effects induced by patulin.

Abbreviations

BSA:

bovine serum albumin

PL:

photoluminescence

T m :

transition temperature

ΔHcal:

enthalpy

PAT:

patulin

References

  1. 1.

    Benesi, H., Hildebrand, J. H. (1949) A spectrophotometric investigation of the interaction of iodine with aromatic hydrocarbons. Am. Chem. Soc. 71, 2703–2707.

    CAS  Article  Google Scholar 

  2. 2.

    Bennett, J. W., Klich, M. (2003) Mycotoxins. Clin. Microbiol. Rev. 16, 497–516.

    CAS  Article  Google Scholar 

  3. 3.

    Carter, D. C., Ho, J. X. (1994) Advances in protein chemistry. Academic Press Inc., San Diego.

    Google Scholar 

  4. 4.

    Chiti, F., Taddei, N., Baronim, F., Capanni, C., Stefani, M., Ramponi, G., Dobson, C. M. (2002) Kinetic partitioning of protein unfolding and aggregation. Nat. Struct. Biol. 9, 137–143.

    CAS  Article  Google Scholar 

  5. 5.

    Dombrink-Kurtzman, M. A., Blackburn, J. A. (2005) Evaluation of several culture media for production of patulin by Penicillium species. Int. J. Food Microbiol. 98, 241–248.

    CAS  Article  Google Scholar 

  6. 6.

    Fliege, R., Metzler, M. (1999) The mycotoxin patulin induces intra- and intermolecular protein crosslinks in vitro involving cysteine, lysine, and histidine side chains, and a-amino groups. Chem. Biol Interact. 123, 85–103.

    CAS  Article  Google Scholar 

  7. 7.

    Francis, G. L. (2010) Albumin and mammalian cell culture: implications for biotechnology applications. Cytotechnology 62, 1–16.

    Google Scholar 

  8. 8.

    Giancola, C., De Sena, C., Fessas, D., Graziano, G., Barone, G. (1997) DSC studies on bovine serum albumin denaturation. Effects of ionic strength and SDS concentration. Int. J. Biol. Macromol. 20, 193–204.

    CAS  Article  Google Scholar 

  9. 9.

    Horváth, E., Papp, G., Belágyi, J., Gazdag, Z., Vágvölgyi, C., Pesti, M. (2010) In vivo direct patulin-induced fluidization of the plasma membrane of fission yeast Schizosaccharomyces pombe. Food and Chem. Toxicol. 48, 1898–1904.

    Article  Google Scholar 

  10. 10.

    Iwahashi, Y., Hosoda, H., Park, J. H., Lee, J. H., Suzuki, Y., Kitagawa, E., Murata, S. M., Jwa, N. S., Gu, M. B., Iwahashi, H. (2006) Mechanisms of patulin toxicity under conditions that inhibit yeast growth. J. Agric. Food Chem. 54, 1936–1942.

    CAS  Article  Google Scholar 

  11. 11.

    Kissinger, H. E. (1957) Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702–1706.

    CAS  Article  Google Scholar 

  12. 12.

    Kunsági-Máté, S., Iwata, K. (2009) Effect of cluster formation of solvent molecules on the preferential solvatation of anthracene in binary alcoholic solutions. Chem. Phys. Lett. 473, 284–287.

    Article  Google Scholar 

  13. 13.

    Kunsági-Máté, S., Kumar, A., Sharma, P., Kollár, L., Nikfardjam, M. P. (2009) Effect of molecular environment on the formation kinetics of complexes of malvidin-3-O-glucoside with caffeic acid and catechin. J. Phys. Chem. B113, 7468–7473.

    Article  Google Scholar 

  14. 14.

    Kunsági-Máté, S., Lecomte, S., Ortmann, E., Kunsági-Máté, E., Desbat, B. (2010) The environment controlled effect of thiacalix[4]arene on the transition thermodynamics and kinetics of bovine serum albumin. J. Incl. Phenom. Macro. Chem. 66, 147–151.

    Article  Google Scholar 

  15. 15.

    Kunsági-Máté, S., Csók, Zs., Iwata, K., Szász, E., Kollár, L. (2011) Role of the conformational freedom of the skeleton in the complex formation ability of resorcinarene derivatives toward a neutral phenol guest. J. Phys. Chem. B115, 3339–3343.

    Article  Google Scholar 

  16. 16.

    Moriyama, Y., Watanabe, E., Kobayashi, K., Harano, H., Inui, E., Takeda, K. (2008) Secondary structural change of bovine serum albumin in thermal denaturation up to 130 °C and protective effect of sodium dodecyl sulfate on the change. J. Phys. Chem. B112, 16585–16589.

    Article  Google Scholar 

  17. 17.

    Murillo, M., Gonzáles-Penas, E., Amezqueta, S. (2008) Determination of patulin in commercial apple juice by micellar electrokinetic chromatography. Food Chem. Toxicol. 46, 57–64.

    CAS  Article  Google Scholar 

  18. 18.

    Privalov, P. L., Gill, S. J. (1988) Stability of protein structure and hydrophobic interaction. Advances in Protein Chemistry 39, 191–234.

    CAS  Article  Google Scholar 

  19. 19.

    Privalov, P. L., Khechinashvili, N. N. (1974) A thermodynamic approach to the problem of stabilization of globular protein structure: A calorimetric study. J. Mol. Biol. 86, 665–684.

    CAS  Article  Google Scholar 

  20. 20.

    Privalov, P. L., Dragan, A. I. (2007) Microcalorimetry of biological macromolecules. Biophys. Chem. 126, 16–24.

    CAS  Article  Google Scholar 

  21. 21.

    Relkin, P., Mulvihill, D. M. (1996) Thermal unfolding of β-lactoglobulin, α-lactalbumin and bovine serum albumin. A thermodynamic approach. Critical Rev. Food Sci. and Nutrition 36, 565–601.

  22. 22.

    Ricelli, A., Baruzzi, F., Solfrizzo, M., Morea, M., Fanizzi, F. P. (2007) Biotransformation of patulin by Gluconobacter oxydons. Appl. Environ. Microbiol. 73, 785–792.

    CAS  Article  Google Scholar 

  23. 23.

    Schumacher, D. M., Metzler, M., Lehmann, L. (2005) Mutagenicity of the mycotoxin patulin in cultured Chinese hamster V79 cells, and its modulation by intracellular glutathione. Arch. Toxicol. 79, 110–121.

    CAS  Article  Google Scholar 

  24. 24.

    Tapia, M. O., Stern, M. D., Koski, R. L., Bach, A., Murphy, M. J. (2002) Effects of patulin on microbial fermentation in continuous culture fermenters. Animal Feed Sci. and Techn. 97, 239–246.

    CAS  Article  Google Scholar 

  25. 25.

    Tong, G. C. (2003) Characterization of cysteine-34 in serum albumin. Thesis. The Ohio State Univ.

    Google Scholar 

  26. 26.

    Virág, E., Pesti, M., Kunsági-Máté, S. (2010) Competitive hydrogen bonds associated with the effect of primycin antibiotic on oleic acid as a building block of plasma membranes. J. Antib. 63, 113–117.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Kunsági-Máté.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Horváth, E., Kálmán, N., Pesti, M. et al. Thermodynamic and Kinetic Processes during the Unfolding of BSA in the Presence of the Mycotoxin Patulin. BIOLOGIA FUTURA 63, 389–398 (2012). https://doi.org/10.1556/ABiol.63.2012.3.9

Download citation

Keywords

  • Patulin
  • BSA unfolding
  • transition thermodynamics and kinetics
  • free enthalpy
  • activation energy