Use of Human Amniotic Epithelial Cells as a Feeder Layer to Support Undifferentiated Growth of Mouse Spermatogonial Stem Cells Via Epigenetic Regulation of the Nanog and Oct-4 Promoters

Abstract

Spermatogonial stem cells (SSCs) are defined by unique properties like other stem cells. However, there are two major challenges: long-term cultivation of normal SSCs into stable cell lines and maintaining the SSCs as undifferentiated and capable of self-renewal. Here, we compared different culture methods for mouse SSCs isolated and cultured from testicular tissue. We found that human amniotic epithelial cells (hAECs) can behave as feeder cells, allowing mouse SSCs to maintain a high level of alkaline phosphatase (AP) activity when cultured long-term. Also, we observed that expression of Nanog, Oct-4 and other important stem cells markers were higher in mouse SSCs cultured on hAECs compared to those cultured on MEF or without any feeder cells. Furthermore, we demonstrated that the CpG islands of the Nanog and Oct-4 promoters were hypomethylated in cells cultured on hAECs. In addition, mouse SSCs cultured on hAECs exhibited higher levels of H3AC and H3K4Me3 in the Nanog and Oct-4 promoters than those cultured on MEF or without feeder cells. Taken together, these results suggest that the hAECinduced epigenetic modifications at the Nanog and Oct-4 locus could be a key mechanism for maintaining mouse SSCs in an undifferentiated state capable of self-renewal.

References

  1. 1.

    Adams, G. B., Scadden, D. T. (2006) The hematopoietic stem cell in its place. Nat. Immunol. 7, 333–337.

    CAS  PubMed  Google Scholar 

  2. 2.

    Akle, C. A., Adinolfi, M., Welsh, K. I. (1981) Immunogenicity of human amniotic epithelial cells after transplantation into volunteers. Lancet 2, 1003–1005.

    CAS  PubMed  Google Scholar 

  3. 3.

    Bibikova, M., Chudin, E., Wu, B. (2006) Human embryonic stem cells have a unique epigenetic signature. Genome Res. 16, 1075–1083.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Boyer, L. A., Plath, K., Zeitlinger, J. (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441, 349–353.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chambers, I., Colby, D., Robertson, M. (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113, 643–655.

    CAS  PubMed  Google Scholar 

  6. 6.

    Chen, B., Wang, Y. B., Zhang, Z. L. (2009) Xeno-free culture of human spermatogonial stem cells supported by human embryonic stem cell-derived fibroblast-like cells. Asian J. Androl. 11, 557–565.

    PubMed  PubMed Central  Google Scholar 

  7. 7.

    Conrad, S., Renninger, M., Hennenlotter, J. (2008) Generation of pluripotent stem cells from adult human testis. Nature 456, 344–349.

    CAS  PubMed  Google Scholar 

  8. 8.

    Cowan, C. A., Atienza, J., Melton, D. A. (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309, 1369–1373.

    CAS  PubMed  Google Scholar 

  9. 9.

    de Rooij, D. G. (2001) Proliferation and differentiation of spermatogonial stem cells. Reproduction 121, 347–354.

    PubMed  Google Scholar 

  10. 10.

    Dym, M., Kokkinaki, M., He, Z. (2009) Spermatogonial stem cells: mouse and human comparisons. Birth Defects Res. Embryo Today 87, 27–34.

    CAS  PubMed  Google Scholar 

  11. 11.

    Dym, M., He, Z., Jiang, J. (2009) Spermatogonial stem cells: unlimited potential. Reprod. Fertil. Dev. 21, 15–21.

    CAS  PubMed  Google Scholar 

  12. 12.

    Freberg, C. T., Dahl, J. A., Timoskainen, S. (2007) Epigenetic reprogramming of OCT4 and NANOG regulatory regions by embryonal carcinoma cell extract. Mol. Biol. Cell 18, 1543–1553.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Giuili, G., Tomljenovic, A., Labrecque, N. (2002) Murine spermatogonial stem cells: targeted transgene expression and purification in an active state. EMBO Rep. 3, 753–759.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Guan, K., Nayernia, K., Maier, L. S. (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440, 1199–1203.

    CAS  PubMed  Google Scholar 

  15. 15.

    Hattori, N., Imao, Y., Nishino, K. (2007) Epigenetic regulation of Nanog gene in embryonic stem and trophoblast stem cells. Genes Cells 12, 387–396.

    CAS  PubMed  Google Scholar 

  16. 16.

    Hermann, B. P., Sukhwani, M., Simorangkir, D. R. (2009) Molecular dissection of the male germ cell lineage identifies putative spermatogonial stem cells in rhesus macaques. Hum. Reprod. 24, 1704–1716.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Hofmann, M. C., Braydich-Stolle, L., Dym, M. (2005) Isolation of male germ-line stem cells; influence of GDNF. Dev. Biol. 279, 114–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Hong, Y., Liu, T., Zhao, H. (2004) Establishment of a normal medakafish spermatogonial cell line capable of sperm production in vitro. Proc. Natl. Acad. Sci. USA 101, 8011–8016.

    CAS  PubMed  Google Scholar 

  19. 19.

    Izadyar, F., Pau, F., Marh, J. (2008) Generation of multipotent cell lines from a distinct population of male germ line stem cells. Reproduction 135, 771–784.

    CAS  PubMed  Google Scholar 

  20. 20.

    Kanatsu-Shinohara, M., Inoue, K., Lee, J. (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119, 1001–1012.

    CAS  PubMed  Google Scholar 

  21. 21.

    Kim, T. H., Barrera, L. O., Zheng, M. (2005) A high-resolution map of active promoters in the human genome. Nature 436, 876–880.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kimura, H., Tada, M., Nakatsuji, N. (2004) Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol. Cell Biol. 24, 5710–5720.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Koizumi, N. J., Inatomi, T. J., Sotozono, C. J. (2000) Growth factor mRNA and protein in preserved human amniotic membrane. Curr. Eye Res. 20, 173–177.

    CAS  PubMed  Google Scholar 

  24. 24.

    Lachner, M., Jenuwein, T. (2002) The many faces of histone lysine methylation. Curr. Opin. Cell Biol. 14, 286–298.

    CAS  PubMed  Google Scholar 

  25. 25.

    Lai, D., Cheng, W., Liu, T. (2009) Use of Human Amnion Epithelial Cells as a Feeder Layer to Support Undifferentiated Growth of Mouse Embryonic Stem Cells. Cloning Stem Cells 11, 331–340.

    CAS  PubMed  Google Scholar 

  26. 26.

    Lee, T. I., Jenner, R. G., Boyer, L. A. (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125, 301–313.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Loh, Y. H., Wu, Q., Chew, J. L. (2006) The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38, 431–440.

    CAS  PubMed  Google Scholar 

  28. 28.

    Lucas, B., Fields, C., Hofmann, M. C. (2009) Signaling pathways in spermatogonial stem cells and their disruption by toxicants. Birth Defects Res. Embryo Today 87, 35–42.

    CAS  PubMed  Google Scholar 

  29. 29.

    Maki, C. B., Pacchiarotti, J., Ramos, T. (2009) Phenotypic and molecular characterization of spermatogonial stem cells in adult primate testes. Hum. Reprod. 24, 1480–1491.

    CAS  PubMed  Google Scholar 

  30. 30.

    Meng, X., Lindahl, M., Hyvonen, M. E. (2000) Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science 287, 1489–1493.

    CAS  PubMed  Google Scholar 

  31. 31.

    Mitsui, K., Tokuzawa, Y., Itoh, H. (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113, 631–642.

    CAS  PubMed  Google Scholar 

  32. 32.

    Miyabayashi, T., Teo, J. L., Yamamoto, M. (2007) Wnt/beta-catenin/CBP signaling maintains longterm murine embryonic stem cell pluripotency. Proc. Natl. Acad. Sci. USA 104, 5668–5673.

    CAS  PubMed  Google Scholar 

  33. 33.

    Niwa, H., Miyazaki, J., Smith, A. G. (2000) Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24, 372–376.

    CAS  PubMed  Google Scholar 

  34. 34.

    Seandel, M., James, D., Shmelkov, S. V. (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449, 346–350.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Shinohara, T., Brinster, R. L. (2000) Enrichment and transplantation of spermatogonial stem cells. Int. J. Androl. 23 Suppl 2, 89–91.

    PubMed  Google Scholar 

  36. 36.

    Shinohara, T., Avarbock, M. R., Brinster, R. L. (1999) beta1- and alpha6-integrin are surface markers on mouse spermatogonial stem cells. Proc. Natl. Acad. Sci. USA 96, 5504–5509.

    CAS  PubMed  Google Scholar 

  37. 37.

    Simonsson, S., Gurdon, J. (2004) DNA demethylation is necessary for the epigenetic reprogramming of somatic cell nuclei. Nat. Cell. Biol. 6, 984–990.

    CAS  PubMed  Google Scholar 

  38. 38.

    Tada, M., Tada, T., Lefebvre, L. (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. EMBO J. 16, 6510–6520.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Takahashi, K., Yamanaka, S. (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663–676.

    CAS  PubMed  Google Scholar 

  40. 40.

    Wu, Z., Falciatori, I., Molyneux, L. A. (2009) Spermatogonial culture medium: an effective and efficient nutrient mixture for culturing rat spermatogonial stem cells. Biol. Reprod. 81, 77–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Xie, T., Spradling, A. C. (2000) A niche maintaining germ line stem cells in the Drosophila ovary. Science 290, 328–330.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lihe Guo or Zhixue Liu.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Liu, T., Huang, Y., Huang, Q. et al. Use of Human Amniotic Epithelial Cells as a Feeder Layer to Support Undifferentiated Growth of Mouse Spermatogonial Stem Cells Via Epigenetic Regulation of the Nanog and Oct-4 Promoters. BIOLOGIA FUTURA 63, 167–179 (2012). https://doi.org/10.1556/ABiol.63.2012.2.1

Download citation

Keywords

  • Human amnion epithelial cells
  • mouse spermatogonial stem cells
  • undifferentiated
  • DNA methylation
  • histone H3K4 trimethylation