Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 4, pp 397–412 | Cite as

In vivo effects of abolishing the Single canonical sumoylation site in the C-terminal region of Drosophila p53

  • N. Pardi
  • Edith Vámos
  • Zsuzsanna Ujfaludi
  • O. Komonyi
  • L. Bodai
  • I. M. BorosEmail author
Article

Abstract

Using yeast two-hybrid screens we determined that Drosophila (Dm)p53 interacts with proteins involved in sumoylation (UBA2, UBC9 and PIAS) through different regions of its C-terminal domain. A K302R point mutation within a single canonical sumoylation site of Dmp53 did not abolish the observed interactions. These observations prompted us to analyze whether Dmp53 sumoylation at this site has any functional role in vivo. Genetic assays showed that deleting one copy of genes involved in sumoylation (lwr, Su(var)2–10 or smt3 heterozygosity) enhanced slightly the mutator phenotype of Dmp53. We compared the in vivo effects of wild type and K302R Dmp53 overproduced from transgenes and determined that similar levels of expression of the mutant and wild type proteins resulted in similar phenotype, and the two proteins showed similar cellular localization. The half life and the trans-activator activity of K302R mutant and wild type Dmp53 were also comparable. Lastly, by analyzing wild type and K302R Dmp53 expressed at different levels in animals and in S2 cells we detected no differences between the mobility of the mutant and wild-type protein. From these data we conclude that under normal developmental conditions the loss of SUMO modification at K302 does not affect Dmp53 function significantly.

Keywords

p53 SUMO apoptosis Drosophila yeast two hybrid 

Abbreviations

BLAST

Basic Local Alignment Search Tool

FACS

fluorescence activated cell sorting

GST

gluthation S-transferase

mwh

multiple wing hair

TULLH

Trp-, Ura-, Leu-, Lys-, His-

Y2H

yeast two-hybrid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., Lipman, D. J. (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402.PubMedPubMedCentralGoogle Scholar
  2. 2.
    Bereczki, O., Ujfaludi, Z., Pardi, N., Nagy, Z., Tora, L., Boros, I. M., Balint, E. (2008) TATA binding protein associated factor 3 (TAF 3) interacts with p53 and inhibits its function. BMC Mol. Biol. 9, 57.CrossRefGoogle Scholar
  3. 3.
    Bischof, J., Maeda, R. K., Hediger, M., Karch, F., Basler, K. (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc. Natl. Acad. Sci. (USA) 104, 3312–3317.CrossRefGoogle Scholar
  4. 4.
    Bodai, L., Pardi, N., Ujfaludi, Z., Bereczki, O., Komonyi, O., Balint, E., Boros, I. M. (2007) Daxxlike protein of Drosophila interacts with Dmp53 and affects longevity and Ark mRNA level. J. Biol. Chem. 282, 36386–36393.CrossRefGoogle Scholar
  5. 5.
    Breeden, L. Nasmyth, K. (1985) Regulation of the yeast HO gene. Cold Spring Harb. Symp. Quant. Biol. 50, 643–650.CrossRefGoogle Scholar
  6. 6.
    Brodsky, M. H., Nordstrom, W., Tsang, G., Kwan, E., Rubin, G. M., Abrams, J. M. (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103–113.CrossRefGoogle Scholar
  7. 7.
    Formstecher, E., Aresta, S., Collura, V., Hamburger, A., Meil, A., Trehin, A., Reverdy, C., Betin, V., Maire, S., Brun, C., Jacq, B., Arpin, M., Bellaiche, Y., Bellusci, S., Benaroch, P., Bornens, M., Chanet, R., Chavrier, P., Delattre, O., Doye, V., Fehon, R., Faye, G., Galli, T., Girault, J. A., Goud, B., de Gunzburg, J., Johannes, L., Junier, M. P., Mirouse, V., Mukherjee, A., Papadopoulo, D., Perez, F., Plessis, A., Rosse, C., Saule, S., Stoppa-Lyonnet, D., Vincent, A., White, M., Legrain, P., Wojcik, J., Camonis, J., Daviet, L. (2005) Protein interaction mapping: a Drosophila case study. Genome Res. 15, 376–384.CrossRefGoogle Scholar
  8. 8.
    Gostissa, M., Hengstermann, A., Fogal, V., Sandy, P., Schwarz, S. E., Scheffner, M., Del Sal, G. (1999) Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. Embo J. 18, 6462–6471.CrossRefGoogle Scholar
  9. 9.
    Jin, S., Martinek, S., Joo, W. S., Wortman, J. R., Mirkovic, N., Sali, A., Yandell, M. D., Pavletich, N. P., Young, M. W., Levine, A. J. (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc. Natl. Acad. Sci. (USA) 97, 7301–7306.CrossRefGoogle Scholar
  10. 10.
    Johnson, E. S. (2004) Protein modification by SUMO. Annu. Rev. Biochem. 73, 355–382.CrossRefGoogle Scholar
  11. 11.
    Kaddurah-Daouk, R., Greene, J. M., Baldwin, A. S., Jr., Kingston, R. E. (1987) Activation and repression of mammalian gene expression by the c-myc protein. Genes Dev. 1, 347–357.CrossRefGoogle Scholar
  12. 12.
    Kwek, S. S., Derry, J., Tyner, A. L., Shen, Z., Gudkov, A. V. (2001) Functional analysis and intracellular localization of p53 modified by SUMO-1. Oncogene 20, 2587–2599.CrossRefGoogle Scholar
  13. 13.
    Mauri, F., McNamee, L. M., Lunardi, A., Chiacchiera, F., Del Sal, G., Brodsky, M. H., Collavin, L. (2008) Modification of Drosophila p53 by SUMO modulates its transactivation and pro-apoptotic functions. J. Biol. Chem. 283, 20848–20856.CrossRefGoogle Scholar
  14. 14.
    Melchior, F. Hengst, L. (2002) SUMO-1 and p53. Cell Cycle 1, 245–249.CrossRefGoogle Scholar
  15. 15.
    Minty, A., Dumont, X., Kaghad, M., Caput, D. (2000) Covalent modification of p73alpha by SUMO- 1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J. Biol. Chem. 275, 36316–36323.CrossRefGoogle Scholar
  16. 16.
    Muller, S., Berger, M., Lehembre, F., Seeler, J. S., Haupt, Y., Dejean, A. (2000) c-Jun and p53 activity is modulated by SUMO-1 modification. J. Biol. Chem. 275, 13321–13329.CrossRefGoogle Scholar
  17. 17.
    Muller, S., Ledl, A., Schmidt, D. (2004) SUMO: a regulator of gene expression and genome integrity. Oncogene 23, 1998–2008.CrossRefGoogle Scholar
  18. 18.
    Ollmann, M., Young, L. M., Di Como, C. J., Karim, F., Belvin, M., Robertson, S., Whittaker, K., Demsky, M., Fisher, W. W., Buchman, A., Duyk, G., Friedman, L., Prives, C., Kopczynski, C. (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91–101.CrossRefGoogle Scholar
  19. 19.
    Pankotai, T., Komonyi, O., Bodai, L., Ujfaludi, Z., Muratoglu, S., Ciurciu, A., Tora, L., Szabad, J., Boros, I. (2005) The homologous Drosophila transcriptional adaptors ADA2a and ADA2b are both required for normal development but have different functions. Mol. Cell. Biol. 25, 8215–8227.CrossRefGoogle Scholar
  20. 20.
    Rodriguez, M. S., Desterro, J. M., Lain, S., Midgley, C. A., Lane, D. P., Hay, R. T. (1999) SUMO-1 modification activates the transcriptional response of p53. Embo J. 18, 6455–6461.CrossRefGoogle Scholar
  21. 21.
    Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., Bandyopadhyay, P., Olivera, B. M., Brodsky, M., Rubin, G. M., Golic, K. G. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568–1581.CrossRefGoogle Scholar
  22. 22.
    Sogame, N., Kim, M., Abrams, J. M. (2003) Drosophila p53 preserves genomic stability by regulating cell death. Proc. Natl. Acad. Sci. (USA) 100, 4696–4701.CrossRefGoogle Scholar
  23. 23.
    Stanyon, C. A., Liu, G., Mangiola, B. A., Patel, N., Giot, L., Kuang, B., Zhang, H., Zhong, J., Finley, R. L., Jr. (2004) A Drosophila protein-interaction map centered on cell-cycle regulators. Genome Biol. 5, R96.CrossRefGoogle Scholar
  24. 24.
    Talamillo, A., Sanchez, J., Barrio, R. (2008) Functional analysis of the SUMOylation pathway in Drosophila. Biochem. Soc. Trans. 36, 868–873.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • N. Pardi
    • 1
  • Edith Vámos
    • 1
  • Zsuzsanna Ujfaludi
    • 2
  • O. Komonyi
    • 2
  • L. Bodai
    • 2
  • I. M. Boros
    • 1
    • 2
    Email author
  1. 1.Institute of BiochemistryBiological Research CenterSzegedHungary
  2. 2.Chromatin Research Group of HAS, Department of Biochemistry and Molecular BiologyUniversity of SzegedSzegedHungary

Personalised recommendations