Effect of Hexavalent Chromium on the Growth and Physiological and Biochemical Parameters on Brassica Oleracea L. var. Acephala DC

Abstract

In order to determine the toxic effect of chromium Cr(VI) on the seed germination, the root and shoot length, the root-cotyledonary leaves, the fresh and dry weight in eight-day-old seedlings Brassica oleracea L. var. acephala DC (kale) were treated with various concentrations of Cr in the growth medium. The accumulation of chromium in the tissues was determined in the cotyledons and the roots of the kale seedlings. High rate of Cr uptake was observed in the roots. But the organs could not accumulate large amount Cr. The effect of Cr on B. oleracea var. acephala was evaluated by changes in chlorophyll a, b, lipid peroxidation, proline, ascorbate, protein carbonyl groups, non-protein thiols and peroxidase activity. There were significant decreases in chlorophylls a, b content of the plants treated with Cr. Chromium treated kale seedlings had higher lipid peroxidation and the protein carbonyl groups in cotyledonary leaves than the roots. The changes refer to toxic effects of Cr. There were increases in the non-protein thiol, the total ascorbate, and proline content in the cotyledons and the roots of the seedlings grown on the media containing 0.1 and 0.15 mM Cr. The guaiacol peroxidase activity was higher in the roots of the seedlings than their cotyledons.

References

  1. 1.

    Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C., Roberts, J. D. (1986) Chemical analysis. In: Chapman, S. B. (ed.) Methods in Plant Ecology. Blackwell Science, Oxford, pp. 411–466.

    Google Scholar 

  2. 2.

    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. 3.

    Bartoli, C. G., Simontacchi, M., Montaldi, E. R., Puntarulo, S. (1997) Oxidants and antioxidants during aging of Chrysanthemum petals. Plant Sci. 129, 157–165.

    CAS  Article  Google Scholar 

  4. 4.

    Bishnoi, N. R., Dua, A., Gupta, V. K., Sawhney, S. K. (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agricul. Ecosys. Environ. 47, 47–57.

    CAS  Article  Google Scholar 

  5. 5.

    Cakmak, I., Marschner, H. (1992) Magnesium deficiency and high light intensity enhance activities of su peroxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol. 98, 1222–1227.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Castro, R. O., Trujillo, M. M., Bucio, J. L., Cervantes, C., Dubrovsky, J. (2007) Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci. 172, 684–691.

    CAS  Article  Google Scholar 

  7. 7.

    Claussen, W. (2005) Proline as a measure of stress in tomato plants. Plant Sci. 168, 241–248.

    CAS  Article  Google Scholar 

  8. 8.

    Elman, G. L. (1959) Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70–77.

    Article  Google Scholar 

  9. 9.

    Ganesh, K. S., Baskaran, L., Rajasekaran, S., Sumathi, K., Chidambaram, A. L. A., Sundaramoorthy, P. (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloid Surf. 63, 159–163.

    CAS  Article  Google Scholar 

  10. 10.

    Gardea-Torresdey, J. L., Peralta-Videa, J. R., Montes, M., Dela Rosa, G., Corral-Diaz, B. (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 92, 229–235.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11.

    CAS  Article  Google Scholar 

  12. 12.

    Heath, R. L., Packer, K. (1968) Leaf senescence; corrrelated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101.

    Google Scholar 

  13. 13.

    Heller, R. (1953) Researches on the mineral nutrition of plant tissues. Ann. Sci. Nat. Bot. Biol. Veg. 14, 1–223.

    Google Scholar 

  14. 14.

    Levine, R. L., Willians Stadtman, E. R., Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymol. 233, 346–363.

    CAS  Article  Google Scholar 

  15. 15.

    Liu, C. P., Shen, Z. G., Li, X. D. (2007) Accumulation and detoxification of cadmium in Brassica pekinensis and B. Chinensis. Biol. Plant. 51, 116–120.

    CAS  Article  Google Scholar 

  16. 16.

    Liu, D., Zou, J., Wang, M., Jiang, W. (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis. Bioresour. Technol. 99, 2628–2636.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Lowry, O. H., Rosebrought, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with folinphenol reagent. J. Biol. Chem. 193, 265–275.

    CAS  Google Scholar 

  18. 18.

    Mei, B., Puryear, J. D., Newton, R. J. (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil 247, 223–231.

    CAS  Article  Google Scholar 

  19. 19.

    Okamura, M. (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Cli. Chim. Acta 103, 259.

    CAS  Article  Google Scholar 

  20. 20.

    Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-Puertas, M. C., McCarthy, I., del Rio, L. A. (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol. Biochem. 40, 521–530.

    CAS  Article  Google Scholar 

  21. 21.

    Panda, S. K. (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol. 164, 1419–1428.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Pandey, V., Dixit, V., Shyam, R. (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61, 40–47.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Artega, S., Rascon, E., Parsons, J. G. (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa). Bull. Environ. Contam. Toxicol. 66, 727–734.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Polle, A., Otter, T., Siefert, F. (1994) Apoplastic peroxidases and lignification in needless of Norvey spruce (Picea abies L.). Plant Physiol. 106, 53–60.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Radotic, K., Ducic, T., Mutavdzic, D. (2000) Changes in peroxidase activity and isozymes in spruce needles after exposure to different concentrations of cadmium. Environ. Exp. Bot. 44, 105–113.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Rai, V., Vajpayee, P., Singh, S. N., Mehrotra, S. (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuflorum L. Plant Sci. 167, 1159–1169.

    CAS  Article  Google Scholar 

  27. 27.

    Reznick, A. Z., Packer, L. (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 357–363.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Rout, G. R., Samantaray, S., Das, P. (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.). Chemosphere 40, 855–859.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Sanitá di Toppi, L., Fossati, F., Musetti, R., Mikerezi, I., Favali, M. A. (2002) Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J. Plant Nutr. 25, 701–717.

    Article  Google Scholar 

  30. 30.

    Saradhi, A., Saradhi, P. P. (1991) Proline accumulation under heavy metal stress. J. Plant Physiol. 138, 554–558.

    Article  Google Scholar 

  31. 31.

    Scoccianti, V., Crinelli, R., Tirinilli, B., Mancinelli, V., Speranza, A. (2006) Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere 64, 1695–1703.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005) Chromium toxicity in plants. Environ. Int. 31, 739–753.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  33. 33.

    Sharma, S. S., Dietz, K. J. (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Env. Bot. 57, 711–726.

    CAS  Article  Google Scholar 

  34. 34.

    Sinha, S., Saxena, R., Singh, S. (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58, 595–604.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Sinha, S., Singh, S., Mallick, S., Sinam, G. (2009) Role of antioxidants in Cr tolerance of three crop plants: metal accumulation in seeds. Ecotoxicol. Environ. Saf. 72, 1111–1121.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Stadtman, E. R., Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins. J. Biol. Chem. 266, 2005–2008.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Sun, R. L., Zhou, Q. X., Sun, F. H., Jin, C. X. (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Env. Exp. Bot. 60, 468–476.

    CAS  Article  Google Scholar 

  38. 38.

    Vajpayee, P., Sharma, S. C., Tripathi, R. D., Rai, U. N., Yunus, M. (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39, 2159–2169.

    CAS  Article  Google Scholar 

  39. 39.

    Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., Singh, S. N. (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41, 1075–1082.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Vanacker, H., Sandalio, L. M., Jiménez, A., Palma, J. M., Corpas, F. J., Meseguer, V., Gómez, M., Sevilla, F., Leterrier, M., Foyer, C. H., del Rio, L. A. (2006) Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J. Exp. Bot. 57, 1735–1745.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Vernay, P., Gauthier-Moussard, C., Jean, L., Bordas, F., Faure, O., Ledoigt, G., Hitmi, A. (2008) Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 72, 763–771.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Wang, C. R., Wang, X. R., Tian, Y., Yu, H. X., Gu, X. Y., Du, W. C., Zhou, H. (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ. Toxicol. Chem. 27, 970–977.

    PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Zou, J., Wang, M., Jiang, W., Liu D. (2006) Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biol. Cracov. Series Bot. 48, 7–12.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasemin Ozdener.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Ozdener, Y., Aydin, B.K., Aygün, S.F. et al. Effect of Hexavalent Chromium on the Growth and Physiological and Biochemical Parameters on Brassica Oleracea L. var. Acephala DC. BIOLOGIA FUTURA 62, 463–476 (2011). https://doi.org/10.1556/ABiol.62.2011.4.11

Download citation

Keywords

  • Brassica oleracea var. acephala
  • chlorophyll
  • chromium
  • guaiacol peroxidase activity
  • malondialdehyde (MDA)
  • praline