Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 4, pp 463–476 | Cite as

Effect of Hexavalent Chromium on the Growth and Physiological and Biochemical Parameters on Brassica Oleracea L. var. Acephala DC

  • Yasemin OzdenerEmail author
  • Birsen Kilic Aydin
  • S. Fatma Aygün
  • Füsun Yürekli
Article

Abstract

In order to determine the toxic effect of chromium Cr(VI) on the seed germination, the root and shoot length, the root-cotyledonary leaves, the fresh and dry weight in eight-day-old seedlings Brassica oleracea L. var. acephala DC (kale) were treated with various concentrations of Cr in the growth medium. The accumulation of chromium in the tissues was determined in the cotyledons and the roots of the kale seedlings. High rate of Cr uptake was observed in the roots. But the organs could not accumulate large amount Cr. The effect of Cr on B. oleracea var. acephala was evaluated by changes in chlorophyll a, b, lipid peroxidation, proline, ascorbate, protein carbonyl groups, non-protein thiols and peroxidase activity. There were significant decreases in chlorophylls a, b content of the plants treated with Cr. Chromium treated kale seedlings had higher lipid peroxidation and the protein carbonyl groups in cotyledonary leaves than the roots. The changes refer to toxic effects of Cr. There were increases in the non-protein thiol, the total ascorbate, and proline content in the cotyledons and the roots of the seedlings grown on the media containing 0.1 and 0.15 mM Cr. The guaiacol peroxidase activity was higher in the roots of the seedlings than their cotyledons.

Keywords

Brassica oleracea var. acephala chlorophyll chromium guaiacol peroxidase activity malondialdehyde (MDA) praline 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, S. E., Grimshaw, H. M., Parkinson, J. A., Quarmby, C., Roberts, J. D. (1986) Chemical analysis. In: Chapman, S. B. (ed.) Methods in Plant Ecology. Blackwell Science, Oxford, pp. 411–466.Google Scholar
  2. 2.
    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1–15.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Bartoli, C. G., Simontacchi, M., Montaldi, E. R., Puntarulo, S. (1997) Oxidants and antioxidants during aging of Chrysanthemum petals. Plant Sci. 129, 157–165.CrossRefGoogle Scholar
  4. 4.
    Bishnoi, N. R., Dua, A., Gupta, V. K., Sawhney, S. K. (1993) Effect of chromium on seed germination, seedling growth and yield of peas. Agricul. Ecosys. Environ. 47, 47–57.CrossRefGoogle Scholar
  5. 5.
    Cakmak, I., Marschner, H. (1992) Magnesium deficiency and high light intensity enhance activities of su peroxide dismutase, ascorbate peroxidase, and glutathion reductase in bean leaves. Plant Physiol. 98, 1222–1227.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Castro, R. O., Trujillo, M. M., Bucio, J. L., Cervantes, C., Dubrovsky, J. (2007) Effects of dichromate on growth and root system architecture of Arabidopsis thaliana seedlings. Plant Sci. 172, 684–691.CrossRefGoogle Scholar
  7. 7.
    Claussen, W. (2005) Proline as a measure of stress in tomato plants. Plant Sci. 168, 241–248.CrossRefGoogle Scholar
  8. 8.
    Elman, G. L. (1959) Tissue sulphydryl groups. Arch. Biochem. Biophys. 82, 70–77.CrossRefGoogle Scholar
  9. 9.
    Ganesh, K. S., Baskaran, L., Rajasekaran, S., Sumathi, K., Chidambaram, A. L. A., Sundaramoorthy, P. (2008) Chromium stress induced alterations in biochemical and enzyme metabolism in aquatic and terrestrial plants. Colloid Surf. 63, 159–163.CrossRefGoogle Scholar
  10. 10.
    Gardea-Torresdey, J. L., Peralta-Videa, J. R., Montes, M., Dela Rosa, G., Corral-Diaz, B. (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: Impact on plant growth and uptake of nutritional elements. Bioresour. Technol. 92, 229–235.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Hall, J. L. (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J. Exp. Bot. 53, 1–11.CrossRefGoogle Scholar
  12. 12.
    Heath, R. L., Packer, K. (1968) Leaf senescence; corrrelated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 32, 93–101.Google Scholar
  13. 13.
    Heller, R. (1953) Researches on the mineral nutrition of plant tissues. Ann. Sci. Nat. Bot. Biol. Veg. 14, 1–223.Google Scholar
  14. 14.
    Levine, R. L., Willians Stadtman, E. R., Shacter, E. (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymol. 233, 346–363.CrossRefGoogle Scholar
  15. 15.
    Liu, C. P., Shen, Z. G., Li, X. D. (2007) Accumulation and detoxification of cadmium in Brassica pekinensis and B. Chinensis. Biol. Plant. 51, 116–120.CrossRefGoogle Scholar
  16. 16.
    Liu, D., Zou, J., Wang, M., Jiang, W. (2008) Hexavalent chromium uptake and its effects on mineral uptake, antioxidant defence system and photosynthesis in Amaranthus viridis. Bioresour. Technol. 99, 2628–2636.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Lowry, O. H., Rosebrought, N. J., Farr, A. L., Randall, R. J. (1951) Protein measurement with folinphenol reagent. J. Biol. Chem. 193, 265–275.Google Scholar
  18. 18.
    Mei, B., Puryear, J. D., Newton, R. J. (2002) Assessment of Cr tolerance and accumulation in selected plant species. Plant and Soil 247, 223–231.CrossRefGoogle Scholar
  19. 19.
    Okamura, M. (1980) An improved method for determination of L-ascorbic acid and L-dehydroascorbic acid in blood plasma. Cli. Chim. Acta 103, 259.CrossRefGoogle Scholar
  20. 20.
    Palma, J. M., Sandalio, L. M., Corpas, F. J., Romero-Puertas, M. C., McCarthy, I., del Rio, L. A. (2002) Plant proteases, protein degradation and oxidative stress: role of peroxisomes. Plant Physiol. Biochem. 40, 521–530.CrossRefGoogle Scholar
  21. 21.
    Panda, S. K. (2007) Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. J. Plant Physiol. 164, 1419–1428.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Pandey, V., Dixit, V., Shyam, R. (2005) Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere 61, 40–47.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Peralta, J. R., Gardea-Torresdey, J. L., Tiemann, K. J., Gomez, E., Artega, S., Rascon, E., Parsons, J. G. (2001) Uptake and effects of five heavy metals on seed germination and plant growth in alfalfa (Medicago sativa). Bull. Environ. Contam. Toxicol. 66, 727–734.PubMedPubMedCentralGoogle Scholar
  24. 24.
    Polle, A., Otter, T., Siefert, F. (1994) Apoplastic peroxidases and lignification in needless of Norvey spruce (Picea abies L.). Plant Physiol. 106, 53–60.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Radotic, K., Ducic, T., Mutavdzic, D. (2000) Changes in peroxidase activity and isozymes in spruce needles after exposure to different concentrations of cadmium. Environ. Exp. Bot. 44, 105–113.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Rai, V., Vajpayee, P., Singh, S. N., Mehrotra, S. (2004) Effect of chromium accumulation on photosynthetic pigments, oxidative stress defence system, nitrate reduction, proline level and eugenol content of Ocimum tenuflorum L. Plant Sci. 167, 1159–1169.CrossRefGoogle Scholar
  27. 27.
    Reznick, A. Z., Packer, L. (1994) Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 357–363.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rout, G. R., Samantaray, S., Das, P. (2000) Effects of chromium and nickel on germination and growth in tolerant and non-tolerant populations of Echinochloa colona (L.). Chemosphere 40, 855–859.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Sanitá di Toppi, L., Fossati, F., Musetti, R., Mikerezi, I., Favali, M. A. (2002) Effects of hexavalent chromium on maize, tomato, and cauliflower plants. J. Plant Nutr. 25, 701–717.CrossRefGoogle Scholar
  30. 30.
    Saradhi, A., Saradhi, P. P. (1991) Proline accumulation under heavy metal stress. J. Plant Physiol. 138, 554–558.CrossRefGoogle Scholar
  31. 31.
    Scoccianti, V., Crinelli, R., Tirinilli, B., Mancinelli, V., Speranza, A. (2006) Uptake and toxicity of Cr(III) in celery seedlings. Chemosphere 64, 1695–1703.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Shanker, A. K., Cervantes, C., Loza-Tavera, H., Avudainayagam, S. (2005) Chromium toxicity in plants. Environ. Int. 31, 739–753.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Sharma, S. S., Dietz, K. J. (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J. Env. Bot. 57, 711–726.CrossRefGoogle Scholar
  34. 34.
    Sinha, S., Saxena, R., Singh, S. (2005) Chromium induced lipid peroxidation in the plants of Pistia stratiotes L.: role of antioxidants and antioxidant enzymes. Chemosphere 58, 595–604.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Sinha, S., Singh, S., Mallick, S., Sinam, G. (2009) Role of antioxidants in Cr tolerance of three crop plants: metal accumulation in seeds. Ecotoxicol. Environ. Saf. 72, 1111–1121.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Stadtman, E. R., Oliver, C. N. (1991) Metal-catalyzed oxidation of proteins. J. Biol. Chem. 266, 2005–2008.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Sun, R. L., Zhou, Q. X., Sun, F. H., Jin, C. X. (2007) Antioxidative defense and proline/phytochelatin accumulation in a newly discovered Cd-hyperaccumulator, Solanum nigrum L. Env. Exp. Bot. 60, 468–476.CrossRefGoogle Scholar
  38. 38.
    Vajpayee, P., Sharma, S. C., Tripathi, R. D., Rai, U. N., Yunus, M. (1999) Bioaccumulation of chromium and toxicity to photosynthetic pigments, nitrate reductase activity and protein content of Nelumbo nucifera Gaertn. Chemosphere 39, 2159–2169.CrossRefGoogle Scholar
  39. 39.
    Vajpayee, P., Tripathi, R. D., Rai, U. N., Ali, M. B., Singh, S. N. (2000) Chromium (VI) accumulation reduces chlorophyll biosynthesis, nitrate reductase activity and protein content in Nymphaea alba L. Chemosphere 41, 1075–1082.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Vanacker, H., Sandalio, L. M., Jiménez, A., Palma, J. M., Corpas, F. J., Meseguer, V., Gómez, M., Sevilla, F., Leterrier, M., Foyer, C. H., del Rio, L. A. (2006) Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition. J. Exp. Bot. 57, 1735–1745.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Vernay, P., Gauthier-Moussard, C., Jean, L., Bordas, F., Faure, O., Ledoigt, G., Hitmi, A. (2008) Effect of chromium species on phytochemical and physiological parameters in Datura innoxia. Chemosphere 72, 763–771.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Wang, C. R., Wang, X. R., Tian, Y., Yu, H. X., Gu, X. Y., Du, W. C., Zhou, H. (2008) Oxidative stress, defense response, and early biomarkers for lead-contaminated soil in Vicia faba seedlings. Environ. Toxicol. Chem. 27, 970–977.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Zou, J., Wang, M., Jiang, W., Liu D. (2006) Chromium accumulation and its effects on other mineral elements in Amaranthus viridis L. Acta Biol. Cracov. Series Bot. 48, 7–12.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Yasemin Ozdener
    • 1
    Email author
  • Birsen Kilic Aydin
    • 2
  • S. Fatma Aygün
    • 3
  • Füsun Yürekli
    • 4
  1. 1.Department of Biology, Faculty of Sciences and ArtsUniversity of Ondokuz MayisKurupelitTurkey
  2. 2.Department of Biology, Faculty of Sciences and ArtsUniversity of AmasyaAmasyaTurkey
  3. 3.Department of Chemistry, Faculty of Sciences and ArtsUniversity of Ondokuz MayisKurupelit, SamsunTurkey
  4. 4.Department of Biology, Faculty of Sciences and ArtsUniversity of InonuMalatyaTurkey

Personalised recommendations