Acta Biologica Hungarica

, Volume 62, Issue 3, pp 302–315 | Cite as

Stimulated Growth Rate by Restriction of P Availability at Moderate Salinity but Insensitive to P Availability at High Salinity in Crithmum Maritimum

  • Nehla LabidiEmail author
  • Manel Ammari
  • Sana Snoussi
  • Najoua Messelini
  • Fatma Gharbi
  • C. Abdelly


The halophyte Crithmum maritimum thrives in cracks of calcareous rocks or cliffs at seashores, a. situation which associates limited phosphorus availability and high salinity. In order to understand the common patterns of colonization and zonation of this species, seedlings were cultivated for 34 d. in inert sandy soil irrigated with a. nutrient solution containing or not phosphorus at moderate (50 mM) or high (250 mM) NaCl level. Net assimilation rate and consequently relative growth rate increased in response to P. deprivation at moderate saline level, but not at high salinity level. Parallelly, CO2 fixation rate, rubisco capacity, transpiration rate and stomatal conductance were diminished by P. deprivation at moderate NaCl level. Intercellular CO2 concentration was therefore not affected. Chlororophyll fluorescence analysis revealed that photosynthetic systems were insensitive to change in P. availability at moderate salinity level: neither pigment content, nor effective and maximum quantum yield, photochemical and non photochemical quenching, and electron transport rate were affected by P. deprivation. On the contrary, at high salinity level when net photosynthesis, rubisco capacity and the quantum yields of PS2 were severely affected, P. deprivation strongly augmented electron transport rate. Stomatal aperture and more modest increase in net photosynthesis, rubisco capacity, photosystem II effective quantum yield and photochemical quenching accompanied this response. This study shows the tolerance of C. maritimum to the phosphorus deprivation combined to moderate or to high saline level which may explain the common patterns of colonization and zonation of this species.


Crithmum maritimum salinity P deficiency growth photosynthetic parameters chlorophyll fluorescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arnon, D. I. (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris L. Plant Physiol. 24, 1–15.CrossRefGoogle Scholar
  2. 2.
    Baker, N. R., Rosenqvist, E. (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Exp. Bot. 55, 1607–1621.CrossRefGoogle Scholar
  3. 3.
    Beadle, C. L. (1985) Photosynthesis: is it limiting to biomass production?. Biomass 8, 119–168.CrossRefGoogle Scholar
  4. 4.
    Ben Hamed, K., Debez, A., Chibani, F., Abdelly, C. (2004) Salt response of Crithmum maritimum, an oleaginous halophyte. J. Trop. Ecol. 45, 151–159.Google Scholar
  5. 5.
    Bjorkman, O., Demmig-Adams, B. (1994) Regulation of photosynthetic light energy capture, conversion, and dissipation in leaves of higher plants. In: Schulze, E. D., Caldwell, M. M. (eds) Ecophysiology of Photosynthesis. Springer-Verlag, Berlin, pp. 17–47.Google Scholar
  6. 6.
    Bulthuis, A. D. (1987) Effects of temperature on photosynthesis and growth of seagrasses. Aquat. Bot 27, 27–40.CrossRefGoogle Scholar
  7. 7.
    Bulthuis, A. D., Axelrad, M. D., Mickelson, M. J. (1992) Growth of the seagrass Heterozostera tas-manica limited by nitrogen in Port Phillip Bay, Australia. Mar. Ecol. Prog. Ser 89, 269–275.CrossRefGoogle Scholar
  8. 8.
    Cunsolo, F., Ruberto, G., Amico, V., Piattelli, M. (1993) Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. J. Nat. Prod. 56, 1598–1600.CrossRefGoogle Scholar
  9. 9.
    de Groot, C. C., van den Boogaard, R., Marcelis, L. F. M., Harbinson, J., Lambers, H. (2003) Contrasting effects of N. and P. deprivation on the regulation of photosynthesis in tomato plants in relation to feedback limitation. J. Exp. Bot. 54, 1957–1967.CrossRefGoogle Scholar
  10. 10.
    Fleury, P., Leclerc, M. (1943) La methode nitro-vanadomolybdique de mission pour le dosage colo-rimetrique du phosphore. Son interet en biochimie. Bull. Chim. Biol. 25, 201–205.Google Scholar
  11. 11.
    Geiger, D. R., Servaites, J. C. (1994) Diurnal regulation of photosynthetic carbon metabolism in C3 plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45, 235–256.CrossRefGoogle Scholar
  12. 12.
    Genty, B., Briantais, J. M., Baker, N. R. (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochem. biophys. Acta 990, 87–92.CrossRefGoogle Scholar
  13. 13.
    Gilmore, A. M. (1997) Mechanistic aspects of xanthophyll cycle-dependant photoprotection in higher plant chloroplast and leaves. Physiol. Plant. 99, 197–209.CrossRefGoogle Scholar
  14. 14.
    Grigoriadou, K., Maloupa, E. (2008) Micropropagation and salt tolerance of in vitro grown Crithmum maritimum L. Plant Cell Tiss. Org. Cul. 94, 209–217.CrossRefGoogle Scholar
  15. 15.
    Halajnia, A., Haghnia, G. H., Fotovat, A., Khorasani, R. (2009) Phosphorus fractions in calcareous soils amended with P. fertilizer and cattle manure. Geoderma 150, 209–213.Google Scholar
  16. 16.
    Hans-Walter, H. (1997) Plant Biochemistry and Molecular Biology. Oxford University Press, New York, USA, 546 pp.Google Scholar
  17. 17.
    Krall, J. P., Edwards, G. E. (1992) Relationship between photosystem II activity and CO2 fixation in leaves. Physiol. Plant. 86, 180–187.CrossRefGoogle Scholar
  18. 18.
    Loreto, F., Centritto, M. (2008) Leaf carbon assimilation in a. water-limited world. Plant Biosyst. 142, 154–161.CrossRefGoogle Scholar
  19. 19.
    Mazzella, L., Alberte, R. S. (1986) Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass Zostera marina. J. Exp. Mar. Biol. Ecol. 100, 165–180.CrossRefGoogle Scholar
  20. 20.
    Ouerghi, Z., Cornic, G., Roudani, A., Ayadi, A., Brulfert, J. (2000) Effect of NaCl on photosynthesis of two wheat species (Triticum durum and T. aestivum) differing in their sensitivity to salt stress. J. Plant Physiol. 156, 335–340.CrossRefGoogle Scholar
  21. 21.
    Pasqualini, S., Panara, F., Ederli, L., Batini, P., Antonielli, M. (1997) Multiple acid phosphatase in barley coleoptiles. Isolation and partial characterization of the 63 kDa soluble enzyme form. Plant Physiol. Biochem. 35, 92–101.Google Scholar
  22. 22.
    Qiu, N., Lu, Q., Lu, C. (2003) Photosynthesis, photosystem II efficiency and the xanthophyll cycle in the salt-adapted halophyte Atriplex centralasiatica. New Phytol. 159, 479–486.CrossRefGoogle Scholar
  23. 23.
    Ruberto, G., Baratta, M. T., Deans, S. G., Dorman, H. J. D. (2000) Antioxidant and antibacterial activity of Foeniculum vulgare and Crithmum maritimum essential oils. PlantaMed 66, 687–693.Google Scholar
  24. 24.
    Schreiber, U., Schliwa, U., Bilger, W. (1986) Continuous recording of photochemical and non-photochemical chlorophyll fluorescence quenching with a. new type of modulation fluorometer. Photosynth. Res. 10, 51–62.CrossRefGoogle Scholar
  25. 25.
    Schreiber, U., Bilger, W., Neubauer, C. (1995) Chlorophyll fluorescence as a. non-invasive indicator for rapid assessment of in vivo photosynthesis. In: Schulze, E. D., Caldwell, M. M. (eds) Eco-physiology of Photosynthesis. Springer-Verlag, Berlin-Heidelberg-New York, pp. 49–70.Google Scholar
  26. 26.
    Strain, E., Beardall, J., Thomson, R., Roberts, S., Light, B. (2006) Spatio-temporal variability in the photosynthetic characteristics of Zostera tasmanica measured by PAM. Aquat. Bot. 85, 21–28.CrossRefGoogle Scholar
  27. 27.
    Torrecillas, A., Leon, A., Del Amor, F., Martinez-Monpean, M. C. (1984) Rapid determination of chlorophyll in leaf discs of lemon tree. Fruits 39, 617–622.Google Scholar
  28. 28.
    Van Kooten, O., Snel, J. F. H. (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25, 147–150.CrossRefGoogle Scholar
  29. 29.
    Zarrouk, M., El Almi, H., Ben Youssef N., Sleimi, N., Ben Miled, D., Smaoui, A., Abdelly, C. (2004) Lipid composition of seeds of local halophyte species: Cakile maritime, Zygophyllum album and Crithmum maritimum. In: Lieth, H. (ed.) Cash Crop Halophytes: Recent Studies. Kluwer Academic Publishers Group, pp. 121–126.Google Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Nehla Labidi
    • 1
    Email author
  • Manel Ammari
    • 1
  • Sana Snoussi
    • 1
  • Najoua Messelini
    • 1
  • Fatma Gharbi
    • 1
  • C. Abdelly
    • 1
  1. 1.Laboratoire d’Adaptation des Plantes aux Stress AbiotiquesCentre de Biotechnologie, Technopole de Borj CédriaHammam-LifTunisia

Personalised recommendations