Inhibition of Smad Signaling is Implicated in Cleft Palate Induced by All-trans Retinoic Acid

Abstract

The effect of all-trans retinoic acid (atRA) on palatal fusion and the underlying mechanisms were investigated using organ culture. Compared with control group, the atRA-treated group (1 μM and 5 μM) had more medial edge epithelium (ME) remaining within the midline epithelial seam (MES). At 10 μM atRA, the opposing shelves were not in contact at the culture end (72 h). Cell death detection by TUNEL and laminin immunohistochemistry demonstrated that atRA (5 μM) induced apoptosis in mesenchyme and inhibited degradation of basal lamina within MES. Notably, migration and apoptosis of ME cells and degradation of basal lamina within MES markedly represented vehicle control palatal shelves in culture. Additionally, apoptosis was not detected in mesenchyme of control palatal shelves. Immunoblotting analysis revealed that Smad2 and Smad3 were endogenously activated and expression of Smad7 was inhibited during the fusion process. In contrast, atRA treatment abrogated phosphorylation of Smad2 and Smad3 and inducible expression of Smad7 in ME. From these data, it is assumed that inhibition of Smad pathway by atRA in ME may play a critical role in abrogation of the ME cell apoptosis and degradation of the basal laminin, which might contribute to failure of palatal fusion.

References

  1. 1.

    Butts, S. C., Liu, W., Li, G., Frenz, D. A. (2005) Transforming growth factor-beta1 signaling participates in the physiological and pathological regulation of mouse inner ear development by all-trans retinoic acid. Birth Defects Res. A Clin. Mol. Teratol. 73, 218–228.

    CAS  Article  Google Scholar 

  2. 2.

    Carbonetto, S., Lindenbaum, M. (1995) The basement membrane at the neuromuscular junction: A synaptic mediatrix. Curr. Opin. Neurobiol. 5, 596–605.

    CAS  Article  Google Scholar 

  3. 3.

    Carette, M. J., Ferguson, M. W. (1992) Mouse embryonic palatal epithelial sheets in culture: an immunocytochemical study of proliferative activity using bromodeoxyuridine. Epithelial Cell Biol. 1, 119–127.

    CAS  PubMed  Google Scholar 

  4. 4.

    Chiarugi, P., Giannoni, E. (2008) Anoikis: a necessary death program for anchorage-dependent cells. Biochem. Pharmacol. 76, 1352–1364.

    CAS  Article  Google Scholar 

  5. 5.

    Choi, K. Y., Kim, H. J., Cho, B. C., Kim, I. S., Kim, H. J., Ryoo, H. M. (2009) A TGF-beta-induced gene, betaig-h3, is crucial for the apoptotic disappearance of the medial edge epithelium in palate fusion. J. Cell Biochem. 107, 818–825.

    CAS  Article  Google Scholar 

  6. 6.

    Cuervo, R., Covarrubias, L. (2004) Death is the major fate of medial edge epithelial cells and the cause of basal lamina degradation during palatogenesis. Develop. 131, 15–24.

    CAS  Article  Google Scholar 

  7. 7.

    Cuervo, R., Valencia, C., Chandraratna, R. A., Covarrubias, L. (2002) Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid. Dev. Biol. 245, 145–156.

    CAS  Article  Google Scholar 

  8. 8.

    Cui, X. M., Chai, Y., Chen, J., Yamamoto, T., Ito, Y., Bringas, P., Shuler, C. F. (2003) TGF-beta3-dependent SMAD2 phosphorylation and inhibition of ME proliferation during palatal fusion. Dev. Dyn. 227, 387–394.

    CAS  Article  Google Scholar 

  9. 9.

    Cui, X. M., Shiomi, N., Chen, J., Saito, T., Yamamoto, T., Ito, Y., Bringas, P., Chai, Y., Shuler, C. F. (2005) Overexpression of Smad2 in Tgf-beta3-null mutant mice rescues cleft palate. Dev. Biol. 278, 193–202.

    CAS  Article  Google Scholar 

  10. 10.

    Datto, M. B., Frederick, J. P., Pan, L., Borton, A. J., Zhuang, Y., Wang, X. F. (1999) Targeted disruption of Smad3 reveals an essential role in transforming growth factor beta-mediated signal transduction. Mol. Cell. Biol. 19, 2495–2504.

    CAS  Article  Google Scholar 

  11. 11.

    Degitz, S. J., Morris, D., Foley, G. L., Francis, B. M. (1998) Role of TGF-beta in RA-induced cleft palate in CD-1 mice. Teratology 58, 197–204.

    CAS  Article  Google Scholar 

  12. 12.

    Dmetrichuk, J. M., Spencer, G. E., Carlone, R. L. (2005) Retinoic acid-dependent attraction of adult spinal cord axons towards regenerating newt limb blastemas in vitro. Dev. Biol. 281, 112–120.

    CAS  Article  Google Scholar 

  13. 13.

    Iglesias, M., Soler, R. M., Hunter, D. D., Ribera, J., Esquerda, J. E., Comella, J. X. (1995) S-laminin and N-acetylgalactosamine located at the synaptic basal lamina of skeletal muscle are involved in synaptic recognition by growing neurites. J. Neurocytol. 24, 903–915.

    CAS  Article  Google Scholar 

  14. 14.

    Kawaguchi, J., Mee, P. J., Smith, A. G. (2005) Osteogenic and chondrogenic differentiation of embryonic stem cells in response to specific growth factors. Bone 36, 758–769.

    CAS  Article  Google Scholar 

  15. 15.

    Lidral, A. C., Romitti, P. A., Basart, A. M., Doetschman, T., Leysens, N. J., Daack-Hirsch, S., Semina, E. V., Johnson, L. R., Machida, J., Burds, A., Parnell, T. J., Rubenstein, J. L., Murray, J. C. (1998) Association of MSX1 and TGFB3 with nonsyndromic clefting in humans. Am. J. Hum. Genet. 63, 557–568.

    CAS  Article  Google Scholar 

  16. 16.

    Lutz, M., Knaus, P. (2002) Integration of the TGF-beta pathway into the cellular signalling network. Cell. Signal. 14, 977–988.

    CAS  Article  Google Scholar 

  17. 17.

    Perris, R., Brandenberger, R., Chiquet, M. (1996) Differential neural crest cell attachment and migration on avian laminin isoforms. Int. J. Dev. Neurosci. 14, 297–314.

    CAS  Article  Google Scholar 

  18. 18.

    Proetzel, G., Pawlowski, S. A., Wiles, M. V., Yin, M., Boivin, G. P., Howles, P. N., Ding, J., Ferguson, M. W. J., Doetschman, T. (1995) Transforming growth factor-beta 3 is required for secondary palate fusion. Nat. Genet. 11, 409–414.

    CAS  Article  Google Scholar 

  19. 19.

    Pullan, S., Wilson, J., Metcalfe, A., Edwards, G. M., Goberdhan, N., Tilly, J., Hickman, J. A., Dive, C., Streuli, C. H. (1996) Requirement of basement membrane for the suppression of programmed cell death in mammary epithelium. J. Cell. Sci. 109, 631–642.

    CAS  PubMed  Google Scholar 

  20. 20.

    Roberts, L. M., Visser, J. A., Ingraham, H. A. (2002) Involvement of a matrix metalloproteinase in MIS-induced cell death during urogenital development. Develop. 126, 1487–1496.

    Google Scholar 

  21. 21.

    Saito, T., Cui, X. M., Yamamoto, T., Shiomi, N., Bringas, P. Jr., Shuler, C. F. (2005) Effect of N’-nitrosonornicotine (NN) on murine palatal fusion in vitro. Toxicology 207, 475–485.

    CAS  Article  Google Scholar 

  22. 22.

    Taya, Y., O’Kane, S., Ferguson, M. W. (1999) Pathogenesis of cleft palate in tgf-beta3 knockout mice. Develop. 126, 3869–3879.

    CAS  Google Scholar 

  23. 23.

    Yu, Z., Lin, J., Xiao, Y., Han, J., Zhang, X., Jia, H., Tang, Y., Li, Y. (2005) Induction of cell-cycle arrest by all-trans retinoic acid in mouse embryonic palatal mesenchymal (MEPM) cells. Toxicol. Sci. 83, 349–354.

    CAS  Article  Google Scholar 

  24. 24.

    Yu. W., Ruest, L. B., Svoboda, K. K. (2009) Regulation of epithelial-mesenchymal transition in palatal fusion. Exp. Biol. Med. (Maywood) 234, 483–491.

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, H., Li, N., Tang, Y., Wu, W., Zhang, Q., Yu, Z. (2009) Negative functional interaction of Retinoic Acid and TGF-β signaling mediated by TG-interacting factor during chondrogenesis. Cell. Physiol. Biochem. 23, 157–164.

    CAS  Article  Google Scholar 

  26. 26.

    Zhao, J., Zhang, Y., Ithychanda, S. S., Tu, Y., Chen, K., Qin, J., Wu, C. (2009) Migfilin interacts with Src and contributes to cell-matrix adhesion-mediated survival signaling. J. Biol. Chem. 284, 34308–34320.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zengli Yu.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Wang, Y., Dai, Y., Li, X. et al. Inhibition of Smad Signaling is Implicated in Cleft Palate Induced by All-trans Retinoic Acid. BIOLOGIA FUTURA 62, 142–150 (2011). https://doi.org/10.1556/ABiol.62.2011.2.4

Download citation

Keywords

  • All-trans retinoic acid
  • Smad
  • palatal fusion