Acta Biologica Hungarica

, Volume 62, Issue 2, pp 204–210 | Cite as

Characterization of Stress Processes of Phaffia Rhodozyma Stress-Resistant Mutant

  • E. Horváth
  • G. Papp
  • Z. Gazdag
  • J. Belágyi
  • Á. Blaskó
  • J. Deli
  • Cs. Vágvölgyi
  • M. PestiEmail author


A carotenoid-less Phaffia rhodozyma mutant (MCP 325) exhibited significantly higher resistance to oxidative stressors such as menadione, H2O2 and K2Cr2O7 than its astaxanthin-producing parental strain (MCP 324). The absence of carotenoids in the mutant did not explain this phenomenon. The cause of the decreased superoxide, hydroxyl radical and glutathione contents, the increased peroxide concentration and the elevated specific activity of catalase under uninduced conditions may be a second mutation. Peroxide treatment induced specific catalase activity in the mutant but not in the parental strain. Regulation of these processes led to the result that, in spite of the mutations, the two strains exhibited the same multiplication rate and generation time.


Phaffia rhodozyma carotenoid oxidative stress EPR GSH 





dihydrorhodamine 123




electron paramagnetic resonance




oxidized glutathione


glutathione reductase


hydrogen peroxide




minimal inhibitory concentration


hydroxyl radical


superoxide radical


reactive oxygen species


superoxide dismutase




N-tert-butyl-phenyl nitron

P. rhodozyma

Phaffia rhodozyma


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anderson, M. E. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555.CrossRefGoogle Scholar
  2. 2.
    Blaskó, Á. (2008) Effect of polar and non-polar carotenoids on Xanthophyllomyces dendrorhous: by EPR. Eur. Biophys. J. 37, 1097–1104.CrossRefGoogle Scholar
  3. 3.
    Cantrell, A. (2003) Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys. 412, 47–54.CrossRefGoogle Scholar
  4. 4.
    Fell, J. W. (1999) Separation of strains of the yeasts Xanthophyllomyces dendrorhous and Phaffia rhodozyma based on rDNA IGS and ITS sequence analysis. J. Ind. Microbiol. Biotechnol. 23, 677–681.CrossRefGoogle Scholar
  5. 5.
    Gazdag, Z. (2003) Chromate tolerance caused by reduced hydroxyl radical production and decreased glutathione reductase activity in Schizosaccharomyces pombe. J. Basic Microbiol. 43, 96–103.CrossRefGoogle Scholar
  6. 6.
    Girard, P. (1994) β-Carotene producing mutants of Phaffia rhodozyma. Appl. Microbiol. Biotechnol. 41, 183–191.CrossRefGoogle Scholar
  7. 7.
    Greenberg, J. T. (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 6181–6185.CrossRefGoogle Scholar
  8. 8.
    Halliwell, B. (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.Google Scholar
  9. 9.
    Henderson, L. M. (1993) Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur. J. Biochem. 217, 973–980.CrossRefGoogle Scholar
  10. 10.
    Johnson, E. A. (2003) Phaffia rhodozyma: colorful odyssey. Int. Microbiol. 6, 169–174.CrossRefGoogle Scholar
  11. 11.
    Kucsera, J. (1998) Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie van Leeuwenhock 73, 163–168.CrossRefGoogle Scholar
  12. 12.
    Kucsera, J. (1998) Life cycle and inheritance of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). In: Ann. Rev. of Res. Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University 2, 58–62.Google Scholar
  13. 13.
    Lee, J. (1995) Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Micobiol. 141, 3127–3132.Google Scholar
  14. 14.
    Liu, B. H. (1999) Composition and biosynthetic pathways of carotenoids in the astaxanthin-producing green alga Chlorococcum sp. Bitoech. Lett. 21, 1007–1010.CrossRefGoogle Scholar
  15. 15.
    Oberley, L. W. (1984) Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 105, 457–464.CrossRefGoogle Scholar
  16. 16.
    Palágyi, Zs. (2004) Genetic variability of astaxanthin-producing yeasts: random amplified polymorphic DNA (RAPD) analysis of Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Acta Biol. Szegediensis 48, 35–38.Google Scholar
  17. 17.
    Pesti, M. (2002) Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction. J. Basic Microbiol. 42, 410–421.CrossRefGoogle Scholar
  18. 18.
    Peterson, G. L. (1983) Determination of total protein. Methods Enzymol. 91, 86–105.Google Scholar
  19. 19.
    Pinto, M. C. (1984) Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch. Biochem. Biophys. 228, 1–12.CrossRefGoogle Scholar
  20. 20.
    Rapta, P. (2005) Scavenging and antioxidant properties of compounds synthesized by carotenogenic yeasts stressed by heavy metals — EPR spin trapping study. Biophys. Chem. 116, 1–9.CrossRefGoogle Scholar
  21. 21.
    Roggenkamp, R. (1974) Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett. 41, 283–286.CrossRefGoogle Scholar
  22. 22.
    Rush, G. F. (1985) Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol. Appl. Pharmacol. 78, 473–483.CrossRefGoogle Scholar
  23. 23.
    Scandalios, J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38, 995–1014.CrossRefGoogle Scholar
  24. 24.
    Schroeder, W. A. (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J. Gen. Microbiol. 139, 907–912.CrossRefGoogle Scholar
  25. 25.
    Shi, X. (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch. Biochem. Biophys. 277, 342–350.CrossRefGoogle Scholar
  26. 26.
    Stacey, N. H. (1986) The amelioration of cadmium-induced injury in isolated hepatocytes by reduced glutathione. Toxicol. 42, 85–93.CrossRefGoogle Scholar
  27. 27.
    Subczynski, W. K. (2000) Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim. Pol. 47, 613–623.PubMedGoogle Scholar
  28. 28.
    Visser, H. (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res. 4, 221–231.CrossRefGoogle Scholar
  29. 29.
    Wang, W. (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol. Rev. 50, 335–356.PubMedGoogle Scholar
  30. 30.
    Wilkinson, M. G. (1996) The Atfl transcription factor is a target for the Styl stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10, 2289–2301.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • E. Horváth
    • 1
  • G. Papp
    • 1
  • Z. Gazdag
    • 1
  • J. Belágyi
    • 2
  • Á. Blaskó
    • 1
  • J. Deli
    • 3
  • Cs. Vágvölgyi
    • 4
  • M. Pesti
    • 1
    Email author
  1. 1.Department of General and Environmental Microbiology, Faculty of SciencesUniversity of PécsPécsHungary
  2. 2.Institute of BiophysicsUniversity of PécsPécsHungary
  3. 3.Department of Biochemistry and Medical Chemistry, Faculty of MedicineUniversity of PécsPécsHungary
  4. 4.Department of Microbiology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations