Characterization of Stress Processes of Phaffia Rhodozyma Stress-Resistant Mutant

Abstract

A carotenoid-less Phaffia rhodozyma mutant (MCP 325) exhibited significantly higher resistance to oxidative stressors such as menadione, H2O2 and K2Cr2O7 than its astaxanthin-producing parental strain (MCP 324). The absence of carotenoids in the mutant did not explain this phenomenon. The cause of the decreased superoxide, hydroxyl radical and glutathione contents, the increased peroxide concentration and the elevated specific activity of catalase under uninduced conditions may be a second mutation. Peroxide treatment induced specific catalase activity in the mutant but not in the parental strain. Regulation of these processes led to the result that, in spite of the mutations, the two strains exhibited the same multiplication rate and generation time.

Abbreviations

Cr(VI):

chromate

DHR123:

dihydrorhodamine 123

ET:

ethidium

EPR:

electron paramagnetic resonance

GSH:

glutathione

GSSG:

oxidized glutathione

GR:

glutathione reductase

H2O2:

hydrogen peroxide

MD:

menadione

MIC:

minimal inhibitory concentration

OH:

hydroxyl radical

O2·:

superoxide radical

ROS:

reactive oxygen species

SOD:

superoxide dismutase

t-BOOH:

tert-butylhydroperoxide

PBN:

N-tert-butyl-phenyl nitron

P. rhodozyma:

Phaffia rhodozyma

References

  1. 1.

    Anderson, M. E. (1985) Determination of glutathione and glutathione disulfide in biological samples. Methods Enzymol. 113, 548–555.

    CAS  Article  Google Scholar 

  2. 2.

    Blaskó, Á. (2008) Effect of polar and non-polar carotenoids on Xanthophyllomyces dendrorhous: by EPR. Eur. Biophys. J. 37, 1097–1104.

    Article  Google Scholar 

  3. 3.

    Cantrell, A. (2003) Singlet oxygen quenching by dietary carotenoids in a model membrane environment. Arch. Biochem. Biophys. 412, 47–54.

    CAS  Article  Google Scholar 

  4. 4.

    Fell, J. W. (1999) Separation of strains of the yeasts Xanthophyllomyces dendrorhous and Phaffia rhodozyma based on rDNA IGS and ITS sequence analysis. J. Ind. Microbiol. Biotechnol. 23, 677–681.

    CAS  Article  Google Scholar 

  5. 5.

    Gazdag, Z. (2003) Chromate tolerance caused by reduced hydroxyl radical production and decreased glutathione reductase activity in Schizosaccharomyces pombe. J. Basic Microbiol. 43, 96–103.

    CAS  Article  Google Scholar 

  6. 6.

    Girard, P. (1994) β-Carotene producing mutants of Phaffia rhodozyma. Appl. Microbiol. Biotechnol. 41, 183–191.

    CAS  Article  Google Scholar 

  7. 7.

    Greenberg, J. T. (1990) Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87, 6181–6185.

    CAS  Article  Google Scholar 

  8. 8.

    Halliwell, B. (1999) Free Radicals in Biology and Medicine. Oxford University Press, Oxford.

    Google Scholar 

  9. 9.

    Henderson, L. M. (1993) Dihydrorhodamine 123: a fluorescent probe for superoxide generation? Eur. J. Biochem. 217, 973–980.

    CAS  Article  Google Scholar 

  10. 10.

    Johnson, E. A. (2003) Phaffia rhodozyma: colorful odyssey. Int. Microbiol. 6, 169–174.

    CAS  Article  Google Scholar 

  11. 11.

    Kucsera, J. (1998) Homothallic life cycle in the diploid red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). Antonie van Leeuwenhock 73, 163–168.

    CAS  Article  Google Scholar 

  12. 12.

    Kucsera, J. (1998) Life cycle and inheritance of the red yeast Xanthophyllomyces dendrorhous (Phaffia rhodozyma). In: Ann. Rev. of Res. Center for Pathogenic Fungi and Microbial Toxicoses, Chiba University 2, 58–62.

    Google Scholar 

  13. 13.

    Lee, J. (1995) Adaptive response of Schizosaccharomyces pombe to hydrogen peroxide and menadione. Micobiol. 141, 3127–3132.

    CAS  Google Scholar 

  14. 14.

    Liu, B. H. (1999) Composition and biosynthetic pathways of carotenoids in the astaxanthin-producing green alga Chlorococcum sp. Bitoech. Lett. 21, 1007–1010.

    CAS  Article  Google Scholar 

  15. 15.

    Oberley, L. W. (1984) Assay of superoxide dismutase activity in tumor tissue. Methods Enzymol. 105, 457–464.

    CAS  Article  Google Scholar 

  16. 16.

    Palágyi, Zs. (2004) Genetic variability of astaxanthin-producing yeasts: random amplified polymorphic DNA (RAPD) analysis of Phaffia rhodozyma (Xanthophyllomyces dendrorhous). Acta Biol. Szegediensis 48, 35–38.

    Google Scholar 

  17. 17.

    Pesti, M. (2002) Chromate sensitivity in fission yeast is caused by increased glutathione reductase activity and peroxide overproduction. J. Basic Microbiol. 42, 410–421.

    Article  Google Scholar 

  18. 18.

    Peterson, G. L. (1983) Determination of total protein. Methods Enzymol. 91, 86–105.

    Google Scholar 

  19. 19.

    Pinto, M. C. (1984) Reversible inactivation of Saccharomyces cerevisiae glutathione reductase under reducing conditions. Arch. Biochem. Biophys. 228, 1–12.

    CAS  Article  Google Scholar 

  20. 20.

    Rapta, P. (2005) Scavenging and antioxidant properties of compounds synthesized by carotenogenic yeasts stressed by heavy metals — EPR spin trapping study. Biophys. Chem. 116, 1–9.

    CAS  Article  Google Scholar 

  21. 21.

    Roggenkamp, R. (1974) Microbial assimilation of methanol induction and function of catalase in Candida boidinii. FEBS Lett. 41, 283–286.

    CAS  Article  Google Scholar 

  22. 22.

    Rush, G. F. (1985) Organic hydroperoxide-induced lipid peroxidation and cell death in isolated hepatocytes. Toxicol. Appl. Pharmacol. 78, 473–483.

    CAS  Article  Google Scholar 

  23. 23.

    Scandalios, J. G. (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz. J. Med. Biol. Res. 38, 995–1014.

    CAS  Article  Google Scholar 

  24. 24.

    Schroeder, W. A. (1993) Antioxidant role of carotenoids in Phaffia rhodozyma. J. Gen. Microbiol. 139, 907–912.

    CAS  Article  Google Scholar 

  25. 25.

    Shi, X. (1990) On the hydroxyl radical formation in the reaction between hydrogen peroxide and biologically generated chromium(V) species. Arch. Biochem. Biophys. 277, 342–350.

    CAS  Article  Google Scholar 

  26. 26.

    Stacey, N. H. (1986) The amelioration of cadmium-induced injury in isolated hepatocytes by reduced glutathione. Toxicol. 42, 85–93.

    CAS  Article  Google Scholar 

  27. 27.

    Subczynski, W. K. (2000) Physical properties of lipid bilayer membranes: relevance to membrane biological functions. Acta Biochim. Pol. 47, 613–623.

    CAS  PubMed  Google Scholar 

  28. 28.

    Visser, H. (2003) Metabolic engineering of the astaxanthin-biosynthetic pathway of Xanthophyllomyces dendrorhous. FEMS Yeast Res. 4, 221–231.

    CAS  Article  Google Scholar 

  29. 29.

    Wang, W. (1998) Endogenous glutathione conjugates: occurrence and biological functions. Pharmacol. Rev. 50, 335–356.

    CAS  PubMed  Google Scholar 

  30. 30.

    Wilkinson, M. G. (1996) The Atfl transcription factor is a target for the Styl stress-activated MAP kinase pathway in fission yeast. Genes Dev. 10, 2289–2301.

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Pesti.

Rights and permissions

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Horváth, E., Papp, G., Gazdag, Z. et al. Characterization of Stress Processes of Phaffia Rhodozyma Stress-Resistant Mutant. BIOLOGIA FUTURA 62, 204–210 (2011). https://doi.org/10.1556/ABiol.62.2011.2.10

Download citation

Keywords

  • Phaffia rhodozyma
  • carotenoid
  • oxidative stress
  • EPR
  • GSH