Advertisement

Acta Biologica Hungarica

, Volume 62, Issue 1, pp 1–21 | Cite as

Role of Gonadal and Adrenal Steroids and Thyroid Hormones in the Regulation of Molting in Domestic Goose

  • P. PéczelyEmail author
  • F. Bogenfürst
  • Margit Kulcsár
  • Bea Polgár
Article

Abstract

Plasma levels of testosterone (T), 17-β-estradiol (E2), progesterone (P4), dehydroepiandrosterone (DHEA), corticosterone (B), thyroxine (T4) and triiodothyronine (T3) were monitored during postnuptial and the prenuptial molt in domestic goose (Anser anser domesticus) in both sexes. 1. At the beginning of postnuptial molt (when the old, worn dawny-, and cover feathers’ loss starts) in ganders, the levels of T, E2, P4 decrease while DHEA and B significantly increase. The elevated levels of T4 and low T3 concentrations characteristic of the last phase of the reproduction, remain unchanged. In layers, similar changes were observed, however, B decreases. 2. In the early phase of outgrowth of wing and cover feathers, plasma levels of T, E2 and P4 are low. Elevated B, DHEA and T4 concentrations decrease in ganders, while in layers DHEA increases and B and T4 levels remain unchanged. T3 increases in both sexes. 3. The subsequent intensive outgrowth period of wing- and cover feathers both in ganders and in layers is characterized by very low levels of T, E2, DHEA and T4, but P4 increased, and T3 concentration remain high. 4. At the end of postnuptial molt–when the outgrowth of dawny, cover-, and wing feathers stops–very low T, E2, P4, DHEA and T4 levels and and high T3 plasma levels were found in both sexes. Fast increase of plasma B was detected in ganders, while in geese, B concentration remain high. 5. During prenuptial molting (outgrowth of contour and tail feathers) low E2, P4 and T4, increasing T and DHEA, but very high T3 and B plasma concentration were measured in ganders. In layers, very low T, E2, P4, DHEA and T4 levels, and very high B and T3 levels were found. 6. At the beginning of the fall-winter sexual repose (postmolting stage) T, E2, P4, DHEA and T4 levels increase, T3 and B declines in both sexes. 7. In the subsequent phase of fall-winter period (preparatory stage) there is a further increase in T, P4 and T4, a fast increase of B and a decrease of E2, DHEA and T3 in ganders. In layers, T, P4 and DHEA decrease, B increases and the T4 and T3 do not change. 8. At the beginning of reproduction high T level, unchanged DHEA, slightly declined P4, and decreased E2, T4, T3 and a strong decline of B concentrations occur in ganders. In layers, T is further increased, E2 and P4 shows high levels, and, at the same time DHEA and T3 remain unchanged, while B and T4 decrease.

Keywords

Steroids thyroid hormones molt goose 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abraham, G.E., Swerdloff, R., Tulcinsky, D., Odell, W. D. (1971) Radioimmunoassay of plasma progesterone. J. Clin. Endocr. Metab. 32, 619–624.CrossRefGoogle Scholar
  2. 2.
    Adams, J. L. (1955) Progesterone-induced unseasonable moult in Single Comb White Leghorn pullets. Poultry Sci. 34, 702–707.CrossRefGoogle Scholar
  3. 3.
    Assenmacher, I., Jallageas, M. (1980) Adaptive aspects of endocrine regulations in birds. In: Ishii, S., Hirano, T., Wada, M. (eds) Hormones, Adaptation and Evolution. Jap. Scient. Soc. Press, Tokyo/Springer Verlag, Berlin, pp. 93–102.Google Scholar
  4. 4.
    Bass, P.D., Hooge, D.M., Koutsos, E. A. (2007) Dietary thyroxine induces molt in chickens (Gallus gallus domesticus). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 146, 335–341.CrossRefGoogle Scholar
  5. 5.
    Boyle, M. L. III., Smyth, J.R., Jr. (1984) Remelanization of feathers in severely amelanotic adult DAM line chickens. Poult. Sci. 63 (Suppl. 1), 102.Google Scholar
  6. 6.
    Braw-Tal, R., Yossefi, S., Pen, S., Shinder, D., Bar, A. (2004) Hormonal changes associated with ageing and induced moulting of domestic hens. Br. Poultry Sci. 45, 815–822.CrossRefGoogle Scholar
  7. 7.
    Davis, G.S., Anderson, K.E., Carroll, A. S. (2000) The effects of long-term caging and molt of Single Comb White Leghorn hens on heterophil to lymphocyte ratios, corticosterone and thyroid hormons. Poultry Sci. 79, 514–518.CrossRefGoogle Scholar
  8. 8.
    Dawson, A. (2006) Control of molt in birds: association with prolactin and gonadal regression in starlings. Gen. Comp. Endocr. 147, 314–322.CrossRefGoogle Scholar
  9. 9.
    Decuypere, E., Verheyen, G. (1986) Physiological basis of induced molting and tissue regeneration in fowls. World Poultry Sci. Assoc. J. 42, 56–68.CrossRefGoogle Scholar
  10. 10.
    DesRochers, D.W., Reed, J.M., Awerman, J., Kluge, J.A., Wilkinson, J., van Griethuijsen, L.I., Romero, L. M. (2009) Exogenous and endogenous corticosterone alter feather quality. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 152, 46–52.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Do thi Dong Xuan, Végi, B., Szoke, Zs., Péczely, P. (2005) Seasonal changes in plasma dehydroepiandrosterone (DHEA) levels of domestic geese. Acta Biol. Hung. 56, 11–20.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Donham, R.S., Wingfield, D.S., Mattocks, P.W., Farner, D. S. (1982) Changes in testicular and plasma androgens with photoperiodically induced increase in plasma LH in the house sparrow. Ge. Comp. Endocr. 48, 342–347.CrossRefGoogle Scholar
  13. 13.
    Gildersleeve, R.P., Satterlee, D.G., Johnson, W.A., Scott, T. R. (1982) The effect of forced molt treatments on selected steroids in hens. Poultry Sci. 61, 2362–2369.CrossRefGoogle Scholar
  14. 14.
    Gill, F. B. (ed.) (1995) Ornithology. Freeman, New York.Google Scholar
  15. 15.
    Groscolas, R., Jallageas, M., Goldsmith, A., Assenmacher, I. (1986) The endocrine control of reproduction and molt in emperor (Aptenodytes forsteri) and adelie (Pygoscelis adeliae) penguins. I. Annual changes in plasma levels of gonadal steroids and LH. Gen. Comp. Endocr. 62, 43–53.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Groscolas, R., Leloup, J. (1986) The endocrine control of reproduction and molt in male and female emperor (Aptenodytes forsteri) and adelie (Pygoscelis adeliae) penguins. II. Annual changes in plasma levels of thyroxine and triiodothyronine. Gen. Comp. Endocr. 63, 264–274.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Herremans, M., Decuypere, E., Chiasson, R. B. (1988) Role of ovarian steroids in the control of moult induction in laying fowls. Br. Poultry Sci. 29, 125–136.CrossRefGoogle Scholar
  18. 18.
    Himeno, K., Tanabe, Y. (1957) Mechanism of molting in hen. Poultry Sci. 36, 835–842.CrossRefGoogle Scholar
  19. 19.
    Jallageas, M. (1975) Interactions reciproques testo-thyroidiennes chez le Canard male. Incidencés sur les cycles endocriniens annuels. These, Univ. de Montpellier, France.Google Scholar
  20. 20.
    Kaminska, B., Opalka, M., Dusza, L. (2008) The effects of ACTH, phytoestrogens and estrogens on corticosterone secretion by gander adrenocortical cells in breeding and nonbreeding seasons. Acta Biol. Hung. 59, 173–184.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Kuenzel, W. J. (2003) Neurobiology of molt in avian species. Poultry Sci. 82, 981–991.CrossRefGoogle Scholar
  22. 22.
    Li, D., Wang, G., Wingfield, J.C., Zhang, Z., Ding, C., Lei, F. (2008) Seasonal changes in adrenocortical responses to acute stress in Eurasian tree sparrow (Passer montanus) on the Tibetian Plateau: comparisaon with house sparrow (P. domesticus) in North America and with the migratory P. domesticus in Qinghai Province. Gen. Comp. Endocr. 158, 47–53.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lindström, A., Visser, G.H., Daan, S. (1993) The energetic cost of feather synthesis is proportional to basal metabolic rate. Physiol. Zool. 66, 490–510.CrossRefGoogle Scholar
  24. 24.
    Mikhail, G., Wu, C.H., Ferin, M., Vande Wiele, R. L. (1970) Radioimmunoassay of plasma estrone and estradiol. Steroids 15, 333–352.CrossRefGoogle Scholar
  25. 25.
    Murphy, M. E. (1996) Energetics and nutrition of molt. In: Carey, C. (ed.) Avian Energetics and Nutritional Ecology. Chapman and Hall, New York, pp. 159–198.Google Scholar
  26. 26.
    Murphy, M.E., Taruscio, T. G. (1995) Sparrows increase their rates of tissue and whole-body protein synthesis during the annual molt. Comp. Biochem. Physiol. 111A, 385–396.Google Scholar
  27. 27.
    Murphy, M.E., Taruscio, T.G., King, J. R. (1992) Do molting birds renovate their skeletons as well as their plumages? Osteoporosis during the annual molt in sparrows. Can. J. Zool. 70, 1109–1113.CrossRefGoogle Scholar
  28. 28.
    Newman, A.E., Pradhan, D.S., Soma, K. K. (2008) Dehydroepiandrosterone and corticosterone are regulated by season and acute stress in a wild songbird: jugular versus brachial plasma. Endocrinology 149, 2537–2545.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Newman, A.E., Soma, K. K. (2009) Corticosterone and dehydroepiandrosterone in songbird plasma and brain: effect of season and acute stress. Eur. J. Neurosci. 29, 1905–1914.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Otsuka, R., Aoki, K., Hon, H., Wada, M. (1998) Changes in circulating LH, sex steroid hormones, thyroid hormones and corticosterone in relation to breeding and molting in captive Humboldt penguins (Spheniscus humboldti) kept in an outdoor open display. Zool. Sci. 15, 103–109.CrossRefGoogle Scholar
  31. 31.
    Otsuka, R., Machida, T., Wada, M. (2004) Hormonal correlations at transition from reproduction to molting in an annual life cycle of Humboldt penguins (Spheniscus humboldti). Gen. Comp. Endocr. 135, 175–185.CrossRefGoogle Scholar
  32. 32.
    Pant, K., Chandola-Saklani, A. (1993) Effect of thyroxine om avian moulting may not involve prior conversion to tri-iodothyronine. J. Endocr. 137, 265–270.CrossRefGoogle Scholar
  33. 33.
    Péczely, P. (1986) Hormonal regulation of molting in black headed gulls. Acta 19. Congr. Intern. Ornithol. II. Univ. Press, Ottawa, 1710–1721.Google Scholar
  34. 34.
    Péczely, P. (1991) Hormonal regulation of feather development and molting on the level of feather follicles. Abstr. Conf. Horm. Physiol. Non-reprod. Behav. in Birds. Göteborg, 22.Google Scholar
  35. 35.
    Péczely, P. (1992) Hormonal control and cell biology of molt. Abstr. 5th Intern. Symp. Avian Endocr. Edinburgh, 26.Google Scholar
  36. 36.
    Péczely, P. (1992) Hormonal regulation of feather development and molt on the level of feather follicles. Ornis Scandinavica 23, 346–354.CrossRefGoogle Scholar
  37. 37.
    Péczely, P., Bank, L. (1989) Importance of biphasic changes of plasma progesterone concentrations during molting. (In Hungarian.) 54th Conf. Hung. Physiol. Soc. Debrecen, E. 106.Google Scholar
  38. 38.
    Péczely, P., Daniel, J. Y. (1979) Interactions reciproques testo-thyroido-surrénaliennes chez la Caille male. Gen. Comp. Endocr. 39, 164–173.CrossRefGoogle Scholar
  39. 39.
    Péczely, P., Do thi Dong Xuan (1995) Complex steroidal regulation of photorefractoriness and moulting period in domestic ganders. Proc. 1. Conf. Egypt.–Hung. Poultry Research. Alexandria, 82–93.Google Scholar
  40. 40.
    Péczely, P., Do thi Dong Xuan (1998) Steroidal background of annual molting pattern in mallards. 22th Intern. Ornithol. Congr. Durban, Ostrich 69/3–4, 332.Google Scholar
  41. 41.
    Péczely, P., Do thi Dong Xuan, El Halawani, M.E., Hargitai, Cs. (1994) An anseriform model of the postrefractory period. J. Ornithologie Sonderh. 65, 129.Google Scholar
  42. 42.
    Péczely, P., El Halawani, M.E., Hargitai, Cs., Mézes, M., Forgó, V., Jánosi, Sz. (1993) The photorefractoriness in domestic goose: effects of gonads and thyroid on the development of postbreeding prolactinemia. Acta Biol. Hung. 44, 329–352.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Péczely, P., Forgó, V. (1996) Seasonal changes of oestrogen/androgen ratio in Anseriformes: Is it a timing mechanism of the photorefractoriness? Abstr. 13th Intern. Congr. Animal Repr. Sydney, P 1–5.Google Scholar
  44. 44.
    Péczely, P., Kovács, Kr., Szelényi, Z. (1984) A possible role of feather follicle’s steroid receptors in molting. Abstr. 3th Int. Symp. Avian Endocr. New Brunswick, I.I. 34.Google Scholar
  45. 45.
    Péczely, P., Ladjánszky, V., Biczó, A., Szoke, Zs., Pintér, O., Kelemen, K., Végi, B. (2004) Dehydroepiandrosterone (DHEA): it’s possible role in the avian annual cycles. Abstr. 8th Intern. Symp. Avian Endocrinol. Scottsdale, 94.Google Scholar
  46. 46.
    Péczely, P., Pethes, Gy. (1979) Alterations in plasma sexual steroid concentrations in the collared dove (Streptopelia decaocto) during sexual maturation and reproductive cycle. Acta Physiol. Acad. Sci. Hung. 54, 161–170.PubMedGoogle Scholar
  47. 47.
    Péczely, P., Pethes, Gy. (1980) Plasma corticosterone, thyroxine and triiodothyronine level in the Collared dove (Streptopelia decaocto) during the reproduction cycle. Acta Physiol. Acad. Sci. Hung. 56, 421–430.PubMedGoogle Scholar
  48. 48.
    Péczely, P., Pethes, Gy. (1981) Effect of thyroidectomy and of thyroxine treatment on the plasma level of corticosterone of the female japanese quail. Acta Biol. Acad. Sci. Hung. 32, 1–6.PubMedGoogle Scholar
  49. 49.
    Péczely, P., Pethes, Gy. (1982) Seasonal cycle of gonadal, thyroid and adrenocortical function in the rook (Corvus frugilegus). Acta Physiol. Acad. Sci. Hung. 59, 59–73.PubMedGoogle Scholar
  50. 50.
    Péczely, P., Pethes, Gy., Rudas, P. (1980) Interrelationship between thyroid and gonadal function in female japanese quail kept under short and long day photoperiods. J. Endocr. 87, 55–63.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Poisbleau, M., Lacroix, A., Chastel, O. (2009) DHEA levels and social dominance relationships in wintering brent geese (Branta bernicla bernicla). Behav. Processes 80, 99–103.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Porter, T.E., Silsby, J.L., Hargis, B.M., Fehrer, S.C., El Halawani, M. E. (1991) Ovarian steroid production in vitro during gonadal regression in the turkey. II. Changes induced by forced molting. Biol. Reprod. 45, 587–591.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Queen, W.H., Christense, V.L., May, J. D. (1997) Supplemental thyroid hormones and molting in turkey breeder hens. Poultry Sci. 76, 887–893.CrossRefGoogle Scholar
  54. 54.
    Rehder, N.B., Bird, D.M., Lague, P. C. (1986) Variations in plasma corticosterone, estrone, estradiol-17 beta, and progesterone concentrations with forced renesting, molt, and body weight of captive female American kestrels. Gen. Comp. Endocr. 62, 386–393.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Reidarson, T.H., McBain, J.F., Denton, D. (1999) The use of medroxyprogesterone acetate to induce molting in chinstrap penguins (Pygoscelis antarctica). J. Zoo Wildl. Med. 30, 278–280.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Remage-Healey, L., Romero, L. M. (2002) Corticosterone and insulin interact to regulate plasma glucose but not lipid concentrations in molting starlings. Gen. Comp. Endocr. 129, 88–94.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Romero, L. M. (2006) Seasonal changes in hypothalamic-pituitary-adrenal axis sensitivity in freeliving house sparrows (Passer domesticus). Gen. Comp. Endocr. 149, 66–71.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Romero, L.M., Cyr, N.E., Romero, R. C. (2006) Corticosterone responses change seasonally in free living house sparrows (Passer domesticus). Gen. Comp. Endocr. 149, 58–65.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Romero, L.M., Strochlic, D., Wingfield, J. C. (2005) Corticosterone inhibits feather growth: potential mechanism explaining seasonal down regulation of corticosterone during molt. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 142, 65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Saint Jalme, M., Williams, J., Mickaelian, I., Paillat, P. (1996) Seasonal variation of LH, sex steroids, body mass, molt, display and laying in two subspecies of Houbara bustard, Chlamydotis undulate macqueenii and Chlamydotis undulata undulata, housed in outdoor cages under natural conditions. Gen. Comp. Endocr. 102, 102–112.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Scanes, C.G., Sharp, P.J., Harvey, S., Godden, P. M. M., Chadwick, A., Newcomer, W. S. (1979) Variations in plasma prolactin, thyroid hormones, gonadal steroids, and growth hormone in turkeys during the induction of egg laying and molt by different photoperiods. Br. Poultry Sci. 20, 143–148.CrossRefGoogle Scholar
  62. 62.
    Sekimoto, K., Imai, K., Suzuki, M., Takikawa, H., Hoshino, M., Totsuka, K. (1987) Thyroxin-induced molting and gonadal function of laying hen. Poultry Sci. 66, 752–756.CrossRefGoogle Scholar
  63. 63.
    Shaffner, C. S. (1954) Feather papilla stimulations by progesterone. Science 120, 345.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Silverin, B. (1979) Activity of the adrenal glands in the pied flycatcher and its relation to testicular regression. Gen. Comp. Endocr. 38, 162–171.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Silverin, B. (1984) Annual gonadotropin and testosterone cycles in free living male birds. J. Exp. Zool. 232, 581–587.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Soma, K.K., Scotti, M.A., Newman, A.E., Charlier, T.D., Demas, G. E. (2008) Novel mechanisms for neuroendocrine regulation of aggression. Front Neuroendcr. 29, 476–489.CrossRefGoogle Scholar
  67. 67.
    Soma, K.K., Wingfield, J. (2001) Dehydroepiandrosterone in songbird plasma: seasonal regulation and relationship to territorial aggression. Ge. Comp. Endocr. 123, 144–155.CrossRefGoogle Scholar
  68. 68.
    Stettenheim, P. (1972) Patterns of molting. In: Farner, D.S., King, J. R. (eds) Avian Biology. Vol. II. Academic Press, New York, pp. 65–102.Google Scholar
  69. 69.
    Strochlic, D.E., Romero, L. M. (2008) The effects of chronic psychological and physical stress on feather replacement in European starlings (Sturnus vulgaris). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 149, 68–79.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Szelényi, Z., Péczely, P. (1988) Thyroxin induced moult in domestic hen. Acta Physiol. Hung. 72, 143–149.PubMedGoogle Scholar
  71. 71.
    Szelényi, Z., Péczely, P., Vadócz, É. (1988) Hormonal changes during forced moult induced by progesterone in domestichen. Acta Physiol. Hung. 71, 69–75.PubMedGoogle Scholar
  72. 72.
    Szelényi, Z., Pethes, Gy., Péczely, P. (1983) Changes in the plasma concentration of sexual steroids in domestic hens during forced and hormonally induced molt. Acta Vet. Acad. Sci. Hung. 31, 57–63.Google Scholar
  73. 73.
    Szoke, Zs., Kisné Do thi Dong Xuan, Péczely, P. (2002) Effect of photoperiod on reproduction cycle and postnuptial molting of Muscovy duck (Cairina moschata). Állatteny. Takarm. 51, 85–86.Google Scholar
  74. 74.
    Tang, X., Ma, H., Zou, S., Chen, W. (2007) Effects of dehydroepiandrosterone (DHEA) on hepatic lipid metabolism parameters and lipogenic gene mRNA expression in broiler chickens. Lipids 42, 1025–1033.CrossRefGoogle Scholar
  75. 75.
    Verheyen, G., Decuypere, E., Chiasson, R.B., Vervloesem, J., Kühn, E.R., Michels, H. (1987) Effect of exogenous LH on plasma concentrations of progesterone and oestradiol in relation to the cessation of egg laying induced by different moulting methods. J. Reprod. Fertil. 81, 13–21.CrossRefGoogle Scholar
  76. 76.
    Vézina, F., Gustowska, A., Jalvingh, K.M., Chastel, O., Piersma, T. (2009) Hormonal correlates and thermoregulatory consequences of molting on metabolic rate in a northerly wintering shorebird. Physiol. Biochem. Zool. 82, 129–142.CrossRefGoogle Scholar
  77. 77.
    Wada, M., Moore, I.T., Breuner, C.W., Wingfield, J. C. (2006) Stress responses in tropical sparrows: comparing tropical and temperate. Zonotrichia. Physiol. Biochem. Zool. 79, 784–792.CrossRefGoogle Scholar
  78. 78.
    Wingfield, J.C., Farner, D. S. (1978) The endocrinology of a natural breeding population of the white crowned sparrow (Zonotrichia leucophrys gambellii). Physiol. Zool. 51, 188–205.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2011

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • P. Péczely
    • 1
    Email author
  • F. Bogenfürst
    • 3
  • Margit Kulcsár
    • 2
  • Bea Polgár
    • 3
  1. 1.Department of Reproductive Biology, Faculty of AgricultureSzent István UniversityGödöllőHungary
  2. 2.Department and Clinic of Reproduction, Faculty of Veterinary SciencesSzent István UniversityBudapestHungary
  3. 3.Department of Poultry Science, Faculty of Animal SciencesKaposvár University and Anabest Ltd.KaposvárHungary

Personalised recommendations