Advertisement

Acta Biologica Hungarica

, Volume 61, Supplement 1, pp 35–48 | Cite as

Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis

  • Márta M.-Hamvas
  • C. Máthé
  • G. Vasas
  • Katalin Jámbrik
  • Mária Papp
  • D. Beyer
  • Ilona Mészáros
  • G. BorbélyEmail author
Article

Abstract

This work focuses on the comparative analysis of the effects of two cyanobacterial toxins of different chemical structure cylindrospermopsin (CYN) and microcystin-LR (MC-LR) on the white mustard (Sinapis alba L.) seedlings. Both cyanotoxins reduced significantly the fresh mass and the length of cotyledons, hypocotyls and main roots of seedlings in a concentration dependent manner. For various mustard organs the 50% inhibitory concentration values (IC50) of growth were between 3–5 μg ml−1 for MC-LR and between 5–10 μg ml−1 for CYN, respectively. Cyanotoxins altered the development of cotyledons, the accumulation of photosynthetically active pigments and anthocyanins. Low MC-LR concentrations (0.01 and 0.1 μg ml−1) stimulated anthocyanin formation in the cotyledons but higher than 1 μg ml−1 MC-LR concentrations strongly inhibited it. The CYN treated chlorotic cotyledons were violet coloured in consequence of high level of anthocyanins, while MC-LR induced chlorosis was accompanied by the appearance of necrotic patches. Necrosis and increases of peroxidase enzyme activity (POD) are general stress responses but these alterations were characteristic only for MC-LR treated mustard plants. These findings provide experimental evidences of developmental alterations induced by protein synthesis and protein phosphatase inhibitory cyanotoxins (CYN and MC-LR) in a model dicotyledonous plant.

Keywords

Cylindrospermopsin Microcystin-LR Sinapis alba L. anthocyanin POD 

Abbreviations

BGST

Blue-Green Sinapis Test

CYN

cylindrospermopsin

IC50

fifty percent inhibitory concentration

MC

microcystins

MC-LR

microcystin-LR

POD

peroxidase enzyme

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abe, T., Lawson, T., Weyers, J. D. B., Codd, G. A. (1996) Microcystin-LR inhibits photosynthesis of Phaseolus vulgaris primary leaves: Implications for current spray irrigation practice. New Phytol. 133, 651–658.Google Scholar
  2. 2.
    Abrahams, S., Tanner, G. J., Larkin, P. J., Ashton, A. (2002) Identification and biochemical characterization of mutants in the proanthocyanidin pathway in Arabidopsis. Plant Physiol. 130, 561–576.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Allwood, E. G., Davies, D. R., Gerrish, C., Ellis, B. E., Bolwell, G. P. (1999) Phosphorylation of phenylalanine ammonia-lyase: evidence for a novel protein kinase and identification of the phosphorylated residue. FEBS Lett. 457, 47–52.Google Scholar
  4. 4.
    Armstrong, J., Armstrong, W. (2001) An overview of the effects of phytotoxins on Phragmites australis in relation to die-back. Aquatic Bot. 69, 251–268.Google Scholar
  5. 5.
    Arnon, D. I. (1949) Copper enzymes in chloroplasts: polyphenol oxidases in Beta vulgaris. Plant Physiol. 24, 1–15.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Banker, R., Carmeli, S., Hadas, O., Teltsch, B., Porat, R., Sukenik, A. (1997) Identification of cylindrospermopsin in Aphanizomenon ovalisporum (Cyanophyceae) isolated from lake Kinneret, Israel. J. Phycol. 33, 613–616.Google Scholar
  7. 7.
    Beyer, D., Surányi, G., Vasas, G., Roszik, J., Erdődi, F., M.-Hamvas, M., Bácsi, I., Bátori, R., Serfőző, Z., Szigeti, Z. M., Vereb, G., Demeter, Z., Gonda, S., Máthé, C. (2009) Cylindrospermopsin induces alterations of root histology and microtubule organization in common reed (Phragmites australis) plantlets cultured in vitro. Toxicon 54, 440–449.PubMedGoogle Scholar
  8. 8.
    Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilising the principle of protein-dye binding. Anal. Biochem. 72, 248–254.CrossRefGoogle Scholar
  9. 9.
    Carmichael, W. W., Azevedo, S. M. F. O., An, J. S., Molica, R. J. R., Jochimsen, E. M., Lau, S., Rinehart, K. L., Shaw, G. R., Eaglesham, G. K. (2001) Human fatalities from cyanobacteria: chemical and biological evidence for cyanotoxins. Environ. Health Persp. 109, 663–668.Google Scholar
  10. 10.
    Chalker-Scott, L. (1999) Environmental significance of anthocyanins in plant responses. Photochem. Photobiol. 70, 1–9.Google Scholar
  11. 11.
    Chen, J., Song, L., Dai, J., Gan, N., Liu, Z. (2004) Effects of microcystins on the growth and the activity of superoxide dismutase and peroxidase of rape (Brassica napus L.) and rice (Oryza sativa L.). Toxicon 43, 393–400.PubMedGoogle Scholar
  12. 12.
    Chong, M. W. K., Wong, B. S. F., Lam, P. K. S., Shaw, G. R., Seawright, A. A. (2002) Toxicity and uptake mechanism of cylindrospermopsin and lophyrotomin in primary rat hepatocytes. Toxicon 40, 205–211.PubMedGoogle Scholar
  13. 13.
    Codd, G. A., Metcalf, J. S., Beattie, K. A. (1999) Retention of Microcystis aeruginosa and microcystin by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon. 37, 1181–1185.PubMedGoogle Scholar
  14. 14.
    Cohen, P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58, 435–508.Google Scholar
  15. 15.
    Dixon, R. A., Paiva, N. L. (1995) Stress induced phenylpropanoid metabolism. Plant Cell 7, 1085–1097.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Frosch, S., Bergfeld, R., Mohr, H. (1976) Light control of plastogenesis and ribulosebisphosphate carboxylase level in mustard seedling cotyledons. Planta 133, 53–56.PubMedGoogle Scholar
  17. 17.
    Gácsi, M., Antal, O., Vasas, G., Máthé, Cs., Borbély, G., Saker, M. L., Győri, J., Farkas, A., Vehovszky, Á., Bánfalvy, G. (2009) Comparative study of cyanotoxins affecting cytoskeletal and chromatin structure in CHO-K1 cells. Toxicol. in Vitro 23, 710–718.PubMedGoogle Scholar
  18. 18.
    Gehringer, M. M., Kewada, V., Coates, N., Downing, T. G. (2003) The use of Lepidium sativum in a plant bioassay system for the detection of microcystin-LR. Toxicon 41, 871–876.PubMedGoogle Scholar
  19. 19.
    Glitz, D. C., Liu- Glitz, L., McClure, J. W., Huerta, A. J. (2004) Effects of a PAL inhibitor on phenolic accumulation and UV-B tolerance in Spirodela intermedia (Koch). J. Exp. Bot. 55, 919–927.Google Scholar
  20. 20.
    Hale, K. L., McGrath, S. P., Lombi, E., Stack, S. M., Terry, N., Pickering, I. J., George, G. N., Pilon-Smith, E. A. H. (2001) Molybdenum sequestration in Brassica species. A role for anthocyanins? Plant Physiol. 126, 1391–1402.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Hodges, D. M., Nozzolillo, C. (1996) Anthocyanin and anthocyanoplast content of Cruciferous seedlings subjected to mineral nutrient deficiencies. J. Plant Physiol. 147, 749–754.Google Scholar
  22. 22.
    Holton, T. A., Cornish, E. C. (1995) Genetics and biochemistry of anthocyanin biosynthesis. Plant Cell 7, 1071–1083.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Huang, W., Xin, W., Li, D., Liu, Y. (2008) Microcystin-RR induced apoptosis in tobacco BY-2 suspension cells is mediated by reactive oxygen species and mitochondrial permeability transition pore status. Toxicol. in Vitro 22, 328–337.PubMedGoogle Scholar
  24. 24.
    Järvenpää, S., Lundberg-Niinistö, C., Spoof, L., Sjövall, O., Tyystjärvi, E., Meriluoto, J. (2007) Effects of microcystins on broccoli and mustard, and analysis of accumulated toxin by liquid chromatography-mass spectrometry. Toxicon 49(6), 865–874.PubMedGoogle Scholar
  25. 25.
    Kinnear, S. H. W., Fabbro, L. D., Duivenvoorden, L. J. (2008) Variable growth responses of water thyme (Hydrilla verticillata) to whole-cell extracts of Cylindrospermopsis raciborskii. Arch. Environ. Contam. Toxicol. 54, 187–194.PubMedGoogle Scholar
  26. 26.
    Kós, P., Gorzó, G., Surányi, G., Borbély, G. (1995) Simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapis alba). Anal. Biochem. 225, 49–53.PubMedGoogle Scholar
  27. 27.
    Kurki-Helasmo, K., Meriluoto, J. (1998) Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapis alba L.) seedlings. Toxicon 36, 1921–1926.PubMedGoogle Scholar
  28. 28.
    Lange, H., Shropshire, W., Mohr, H. (1971) An analysis of phytochrome-mediated anthocyanin synthesis. Plant Physiol. 47, 649–655.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Luan, S. (2003) Protein phosphatases in plants. Annu. Rev. Plant Biol. 54, 63–92.PubMedGoogle Scholar
  30. 30.
    MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P., Codd, G. A. (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264, 187–192.PubMedGoogle Scholar
  31. 31.
    MacKintosh, C., Diplexcito, J. (2003) Naturally occurring inhibitors of serine/threonine phosphatases. In: Wells, J., Hunter, T., Karin, M., Farquhar, M., Thompson, B. (eds) Handbook of Cell Signaling. Vol. 1. Elsevier Science Publ., USA, pp. 607–611.Google Scholar
  32. 32.
    Máthé, C., M.-Hamvas, M., Vasas, G., Surányi, G., Bácsi, I., Beyer, D., Tóth, S., Tímár, M., Borbély, G. (2007) Microcystin-LR, a cyanobacterial toxin, induces growth inhibition and histological alterations in common reed (Phragmites australis) plants regenerated from embryonic calli. New Phytol. 176, 824–835.PubMedGoogle Scholar
  33. 33.
    McElhiney, J., Lawton, L. A., Leifert, C. (2001) Investigations into the inhibitory effects of microcystins on plant growth and the toxicity of plant tissues following exposure. Toxicon 39, 1411–1420.PubMedGoogle Scholar
  34. 34.
    Metcalf, J. S., Barakate, A., Codd, G. A. (2004) Inhibition of plant protein synthesis by the cyanobacterial hepatotoxin, cylindrospermopsin. FEMS Microbiol. Lett. 235, 125–129.PubMedGoogle Scholar
  35. 35.
    Metcalf, J. S., Lindsay, J., Beattie, K. A., Birmingham, S., Saker, M. L., Törökné, A. K., Codd, G. A. (2002) Toxicity of cylindrospermopsin to the brine shrimp Artemia salina: comparisons with protein synthesis inhibitors and microcystins. Toxicon 40, 1115–1120.PubMedGoogle Scholar
  36. 36.
    M.-Hamvas, M., Veres, Sz., Mészáros, I., Máthé, Cs., Borbély, Gy. (2002) Mikrocisztin-LR hatása a mustár csíranövények sziklevelének pigmentösszetételére és fotoszintetikus aktivitására. (Influence of microcystin-LR on the photosynthetic activity and pigment composition.) Hidrológiai Közlöny 82, 80–82. (In Hungarian with English abstract.)Google Scholar
  37. 37.
    M.-Hamvas, M., Máthé, Cs., Molnár, E., Vasas, G., Grigorszky, I., Borbely, G. (2003) Microcystin- LR alters the growth, anthocyanin content and single-stranded DNase enzyme activities in Sinapis alba L. seedlings. Aquat. Toxicol. 62, 1–9.PubMedGoogle Scholar
  38. 38.
    Mitrovic, S. M., Pflugmacher, S., James, K. J., Furey, A. (2004) Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat. Toxicol. 68, 185–192.PubMedGoogle Scholar
  39. 39.
    Mohr, H. (1972) Lectures on Photomorphogenesis. Springer, Berlin, Heidelberg, New York.Google Scholar
  40. 40.
    Mohr, H. (1982) Phytochrome and gene expression. In: Héléne, C., Charlier, M., Montenay-Garestier, Th., Laustriat, G. (eds) Trends in Photobiology. Plenum Press, New York, London, pp. 515–530.Google Scholar
  41. 41.
    Molnár, E., M.-Hamvas, M., Máthé, Cs., Vasas, G., Grigorszky, I., Borbély, Gy. (2000) Cianotoxinok hatása növényi peroxidázok aktivitására. (The alteration of peroxidase activity in cyanotoxin treated plants.) Hidrológiai Közlöny, 5–6, 871–872. (In Hungarian with English abstract.)Google Scholar
  42. 42.
    Navabpour, S., Morris, K., Allen, R., Harrison, E., A.-H.-Mackerness, S., Buchanan-Wollaston, V. (2003) Expression of senescence-enhanced genes in response to oxidative stress. J. Exp. Bot. 54, 2285–2292.PubMedGoogle Scholar
  43. 43.
    Peuthert, A., Chakrabarti, S., Pflugmacher, S. (2007) Uptake of microcystin-LR and -LF (cyanobacterial toxins) in seedlings of several important agricultural plant species and the correlation with cellular damage (lipid peroxidation). Environ. Toxicol. 22, 436–442.PubMedGoogle Scholar
  44. 44.
    Pflugmacher, S., Codd, G. A., Steinberg, C. E. W. (1999) Effects of cyanobacterial toxin microcystin- LR on detoxication enzymes in aquatic plants. Environ. Toxicol. 14, 111–115.Google Scholar
  45. 45.
    Pflugmacher, S. (2004) Promotion of oxidative stress in aquatic macrophyte Ceratophyllum demersum during biotransformation of the cyanobacterial toxin microcystin-LR. Aquat. Toxicol. 70, 169–178.PubMedGoogle Scholar
  46. 46.
    Pflugmacher, S., Aulhorn, M., Grimm, B. (2007) Influence of a cyanobacterial crude extract containing microcystin-LR on the physiology and antioxidative defence systems of different spinach variants. New Phytol. 175, 482–489.PubMedGoogle Scholar
  47. 47.
    Rakow, G., Raney, J. P., Relf-Eckstein, J., Rode, D. (2009) AC Pennant, AC Base and Andante yellow condiment mustard cultivars. Can. J. Plant Sci. 89, 331–336.Google Scholar
  48. 48.
    Rastogi, R. P., Sinha, R. P. (2009) Biotechnological and industrial significance of cyanobacterial secondary metabolites. Biotechnol. Adv. 27, 521–539.PubMedGoogle Scholar
  49. 49.
    Reiss, T., Bergfeld, R., Link, G., Thien, W., Mohr, H. (1983) Photooxidative destruction of chloroplasts and its consequences for cytosolic enzyme levels and plant development. Planta 159, 518–528.PubMedGoogle Scholar
  50. 50.
    Romanowska-Duda, Z., Mankiewicz, J., Tarczynska, M., Walter, Z., Zalewski, M. (2002) The effect of toxic cyanobacteria (Blue-Green Algae) on water plants and animal cells. Pol. J. Environ. Stud. 11, 561–566.Google Scholar
  51. 51.
    Ross, D. W., Brown, J., McCaffrey, J. P., Harmon, B. L., Davis, J. B. (2008) Cabbage seedpod weevil resistance in canola (Brassica napus L.), yellow mustard (Sinapis alba L.) and canola × yellow mustard hybrids. Can. J. Plant Sci. 88, 239–245.Google Scholar
  52. 52.
    Saito, K., Yamazaki, M. (2002) Biochemistry and molecular biology of the late-stage of biosynthesis of anthocyanin: lessons from Perilla frutescens as a model plant. New Phytol. 155, 9–23.Google Scholar
  53. 53.
    Saqrane, S., El Ghazali, I., Ouahid, Y., El Hassnib, M., El Hadrani, I., Bouarab, L., del Campo, F. F., Oudra, B., Vasconcelos, V. (2007) Phytotoxic effects of cyanobacteria extract on the aquatic plant Lemna gibba: microcystin accumulation, detoxication and oxidative stress induction. Aquat. Toxicol. 83, 284–294.PubMedGoogle Scholar
  54. 54.
    Smith, R. D., Walker, J. C. (1996) Plant protein phosphatases. Annu. Rev. Plant Phys. 47, 101–125.Google Scholar
  55. 55.
    Spelt, C., Quattrocchio, F., Mol, J., Koes, R. (2002) ANTHOCYANIN 1 of Petunia controls pigment synthesis, vacuolar pH, and seed coat development by genetically distinct mechanisms. Plant Cell 14, 2121–2135.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Törökné, A. K., László, E., Chorus, I., Fastner, I., Heinze, R., Padisák, J., Barbosa, F. A. R. (2000) Water quality monitoring by Thamnotoxkit F (–) including cyanobacterial blooms. Water Sci. Technol. 42, 381–385.Google Scholar
  57. 57.
    Vasas, G., Gáspár, A., Páger, C., Surányi, G., Máthé, C., M.-Hamvas, M., Borbély, G. (2004) Analysis of cyanobacterials toxins (anatoxin-a, cylindrospermopsin, microcystin-LR) by capillary electrophoresis. Electrophoresis 25, 108–115.PubMedGoogle Scholar
  58. 58.
    Vasas, G., Gáspár, A., Surányi, G., Batta, G., Gyémánt, G., M.-Hamvas, M., Máthé, C., Grigorszky, I., Molnár, E., Borbély, G. (2002) Capillary electrophoretic assay and purification of cylindrospermopsin, a cyanobacterial toxin from Aphanizomenon ovalisporum, by plant test (Blue-Green Sinapis Test). Anal. Biochem. 302, 95–103.PubMedGoogle Scholar
  59. 59.
    Weiss, J., Liebert, H. P., Braune, W. (2000) Influence of microcystin-RR on growth and photosynthetic capacity of the duckweed Lemna minor L. J. Appl. Bot.–Angew. Bot. 74, 100–105.Google Scholar
  60. 60.
    Wharton, P. S., Nicholson, R. L. (2000) Temporal synthesis and radiolabellig of the sorghum 3-deoxyanthocyanidin phytoalexins and the anthocyanin, cyaniding 3-dimalonyl glucoside. New Phytol. 145, 457–469.Google Scholar
  61. 61.
    White, S. H., Duinvenvoorden, L. J., Fabbro, L. D. (2005) Absence of free-cylindrospermopsin bioconcentration in water thyme (Hydrilla verticillata). B. Environ. Contam. Tox. 75, 574–583.Google Scholar
  62. 62.
    Wiegand, C., Pflugmacher, S. (2005) Ecotoxicological effects of selected cyanobacterial secondary metabolites a short review. Toxicol. Appl. Pharmacol. 203, 201–218.PubMedGoogle Scholar
  63. 63.
    Yin, L., Huang, J., Li, D., Liu, Y. (2005) Microcystin-RR uptake and ist effects on the growth of submerged macrophyte Vallisneria natans (lour.) hara. Environ. Toxicol. 20, 308–313.PubMedGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Márta M.-Hamvas
    • 1
  • C. Máthé
    • 1
  • G. Vasas
    • 1
  • Katalin Jámbrik
    • 1
  • Mária Papp
    • 1
  • D. Beyer
    • 1
  • Ilona Mészáros
    • 1
  • G. Borbély
    • 1
    Email author
  1. 1.Department of Botany, Faculty of Science and TechnologyUniversity of DebrecenDebrecenHungary

Personalised recommendations