Acta Biologica Hungarica

, Volume 61, Issue 4, pp 457–469 | Cite as

Development of a Virus Induced Gene Silencing Vector from a Legumes Infecting Tobamovirus

  • Éva VárallyayEmail author
  • Zsuzsanna Lichner
  • Judit Sáfrány
  • Z. Havelda
  • P. Salamon
  • Gy. Bisztray
  • J. Burgyán


Medicago truncatula, the model plant of legumes, is well characterized, but there is only a little knowledge about it as a viral host. Viral vectors can be used for expressing foreign genes or for virus-induced gene silencing (VIGS), what is a fast and powerful tool to determine gene functions in plants. Viral vectors effective on Nicotiana benthamiana have been constructed from a number of viruses, however, only few of them were effective in other plants. A Tobamovirus, Sunnhemp mosaic virus (SHMV) systemi-cally infects Medicago truncatula without causing severe symptoms. To set up a viral vector for Medicago truncatula, we prepared an infectious cDNA clone of SHMV. We constructed two VIGS vectors differing in the promoter element to drive foreign gene expression. The vectors were effective both in the expression and in the silencing of a transgene Green Fluorescent Protein (GFP) and in silencing of an endogenous gene Phytoene desaturase (PDS) on N. benthamiana. Still only one of the vectors was able to successfully silence the endogenous Chlorata 42 gene in M. truncatula.


VIGS SHMV Medicago truncatula gene silencing functional genomics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We wish to thank Gabor Giczey for critical reading of the manuscript. É. V. is recipients of Bolyai János Fellowship.


  1. 1.
    Baulcombe, D. (2004) RNA silencing in plants. Nature 431, 356–363.CrossRefGoogle Scholar
  2. 2.
    Baulcombe, D. C. (1999) Fast forward genetics based on virus-induced gene silencing. Curr. Opin. Plant. Biol. 2, 109–113.CrossRefGoogle Scholar
  3. 3.
    Constantin, G. D., Krath, B. N., MacFarlane, S. A., Nicolaisen, M., Johansen, I. E., Lund, O. S. (2004) Virus-induced gene silencing as a tool for functional genomics in a legume species. Plant. J. 40, 622–631.CrossRefGoogle Scholar
  4. 4.
    Cook, D. R. (1999) Medicago truncatula - a model in the making! Curr. Opin. Plant. Biol. 2, 301–304.CrossRefGoogle Scholar
  5. 5.
    Dawson, W. O, Lewandowski, D. J., Hilf M. E., Bubrick, P., Raffo, A. J., Shaw, J. J., Grantham, G. L., Desjardins, R. R. (1989) A tobacco mosaic virus-hybrid expresses and loses an added gene. Virology 172, 285–292.CrossRefGoogle Scholar
  6. 6.
    Donson, J., Kearney, C. M., Hilf, M. E., Dawson, W. O. (1991) Systemic expression of a bacterial gene by a tobacco mosaic virus-based vector. Proc. Natl. Acad. Sci. U.S.A. 88, 7204–7208.CrossRefGoogle Scholar
  7. 7.
    Grdzelishvili, V. Z., Chapman, S. N, Dawson, W. O., Lewandowski, D. J. (2000) Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo. Virology 275, 177–192.CrossRefGoogle Scholar
  8. 8.
    Gronlund, M., Constantin, G., Piednoir, E., Kovacev, J., Johansen, I. E., Lund, O. S. (2008) Virus-induced gene silencing in Medicago truncatula and Lathyrus odorata. Virus Res. 135, 345–349.CrossRefGoogle Scholar
  9. 9.
    Havelda, Z., Hornyik, C., Valoczi, A., Burgyan, J. (2005) Defective interfering RNA hinders the activity of a tombusvirus-encoded posttranscriptional gene silencing suppressor. J. Virol. 79, 450–457.CrossRefGoogle Scholar
  10. 10.
    Kumagai, M. H., Donson, J., della-Cioppa, G., Harvey, D., Hanley, K., Grill, L. K. (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc. Natl. Acad. Sci. U.S.A. 92, 1679–1683.CrossRefGoogle Scholar
  11. 11.
    Molnar, A., Csorba, T., Lakatos, L., Varallyay, E., Lacomme, C., Burgyan, J. (2005) Plant virus-derived small interfering RNAs originate predominantly from highly structured single-stranded viral RNAs. J. Virol. 79, 7812–7818.CrossRefGoogle Scholar
  12. 12.
    Shivprasad, S., Pogue, G. P., Lewandowski, D. J., Hidalgo, J., Donson, J., Grill, L. K., Dawson, W. O. (1999) Heterologous sequences greatly affect foreign gene expression in tobacco mosaic virus-based vectors. Virology 255, 312–323.CrossRefGoogle Scholar
  13. 13.
    Silver, S., Quan, S., Deom, C. M. (1996) Completion of the nucleotide sequence of sunn-hemp mosaic virus: a tobamovirus pathogenic to legumes. Virus Genes 13, 83–85.CrossRefGoogle Scholar
  14. 14.
    Szittya, G., Silhavy, D., Dalmay, T., Burgyan, J. (2002) Size-dependent cell-to-cell movement of defective interfering RNAs of Cymbidium ringspot virus. J. Gen. Virol. 83, 1505–1510.CrossRefGoogle Scholar
  15. 15.
    Turnage, M. A., Muangsan, N., Peele, C. G., Robertson, D. (2002) Geminivirus-based vectors for gene silencing in Arabidopsis. Plant. J. 30, 107–114.CrossRefGoogle Scholar
  16. 16.
    Varallyay, E., Burgyan, J., Havelda, Z. (2007) Detection of microRNAs by Northern blot analyses using LNA probes. Methods 43, 140–145.CrossRefGoogle Scholar
  17. 17.
    Yang, S.-J, Carter, S. A., Cole, A. B., Cheng, N.-H, Nelson, R. S. (2004) A natural variant of a host RNA-dependent RNA polymerase is associated with increased susceptibility to viruses by Nicotiana benthamiana. PNAS 101, 6297–6302.CrossRefGoogle Scholar
  18. 18.
    Zhang, C., Ghabrial, S. A. (2006) Development of Bean pod mottle virus-based vectors for stable protein expression and sequence-specific virus-induced gene silencing in soybean. Virology 344, 401–411.CrossRefGoogle Scholar

Copyright information

© Akadémiai Kiadó, Budapest 2010

This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Éva Várallyay
    • 1
    Email author
  • Zsuzsanna Lichner
    • 1
  • Judit Sáfrány
    • 1
  • Z. Havelda
    • 1
  • P. Salamon
    • 2
  • Gy. Bisztray
    • 3
  • J. Burgyán
    • 1
  1. 1.Agricultural Biotechnology CentrePlant Biology InstituteGödöllőHungary
  2. 2.Rákóczi út 14BerkeszHungary
  3. 3.Department of Viticulture, Faculty of Horticultural SciencesCorvinus University of BudapestBudapestHungary

Personalised recommendations